

2.6.2 Attainment of PO, PSO and CO

Attainment of Course Outcomes

Attainment of Course Outcomes

In the Outcome Based Education (OBE), assessment is done through one or more than one processes, carried out by the department, that identify, collect, and prepare data to evaluate the achievement of course outcomes (CO's).

The process for finding the attainment of Course outcomes uses various tools/methods.

These methods are classified into two types: **Direct methods and indirect methods.**

- Direct methods display the student's knowledge and skills from their performance in the class/assignment test, internal assessment tests, assignments, semester examinations, seminars, laboratory assignments/practicals, mini projects etc. These methods provide a sampling of what students know and/or can do and provide strong evidence of student learning.
- Indirect methods such as course exit survey and examiner feedback to reflect on student's learning. They are used to assess opinions or thoughts about the graduate's knowledge or skills.

Rubrics are used for both formative and summative assessment of students. Same rubric is used for assessing an outcome so that the faculty is able to assess student progress and maintain the record of the same for each student. The rubrics are shared with students before being evaluated so that they are aware of the performance criteria and their weightage.

Following tables show the various methods used in assessment process that periodically documents and demonstrates the degree to which the Course Outcomes are attained. They include information on:

- a) Listing and description of the assessment processes used to gather the data, and
- b) The frequency with which these assessment processes are carried out.

Table 1 : Direct Assessment tool used for CO attainment

Sr. No.	Direct Assessment Method	Assessment frequency	Description
1.	Internal Assessment Test	Twice in a Semester	The Internal Assessment marks in a theory paper shall be based on two tests generally conducted at the end of 6 th and 11 th weeks of each semester. It is a metric used to continuously assess the attainment of course outcomes w.r.t course objectives. Average marks of two tests shall be the Internal Assessment Marks for the relevant course.
2.	Lab Assignments / experiments	Once in a week	Lab Assignment/Experiment is a qualitative performance assessment tool designed to assess students' practical knowledge and problem solving skills. Minimum ten experiments need to be conducted for every lab course.
3	End Semester Examination	Once in a Semester	End Semester examination (theory or practical) are the metric to assess whether all the course outcomes
4	Practical Semester Examination		are attained or not framed by the course incharge. End Semester Examination is more focused on attainment of all course outcomes and uses a descriptive questions.
5	Home Assignments	Twice in a Semester	Assignment is a metric used to assess student's analytical and problem solving abilities. Every student is assigned with course related tasks & assessment will be done based on their performance. Grades are assigned depending on their innovation in solving/deriving the problems.

Agnel Charities' Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

6	Class /	Twice in a	It is a metric used to continuously assess the					
	Assignment	Semester	student's understanding capabilities.					
	Test							
7	Preliminary	Once in a	Preliminary examination is the metric to assess					
	Examination	semester	whether all the course outcomes are attained or not					
			by asking descriptive questions.					
8	Presentations	As per the	Presentation is the metric used to assess student's					
		requirement	communication and presentation skills along with					
			depth of the subject knowledge. Seminars topics are					
			given to the students that cover topics of current					
			interest or provide in-depth coverage of selected					
			topics from the core courses.					

Table 2: Indirect Assessment tool used for CO attainment

Sr.	Indirect	Assessment	Method Description
No.	Assessment	frequency	
	Method		
	Course Exit Survey	End of	Collect variety of information about course
1		Semester	outcomes from the students after learning entire
			course.

The weightages given for various assessment tools used for the attainment of Course Outcomes are shown in the following figure 1 and table 3

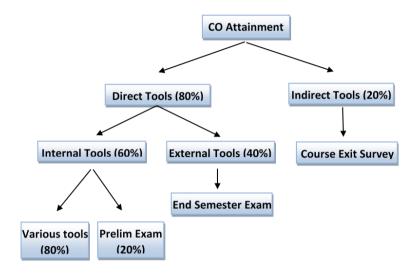


Figure 1: List of Course Assessment tools

Table 3: List of Course Assessment tools

			Tools	Frequency		Weighta	age			
	Direct					Assignment tests	Twice in a semester			
			Internal assessment	Twice in a semester		80 % 60%				
Assessment Tools		Internal Tools	Home Assignments	Selected Topic			80%			
			Practical	Weekly						
			MOCK Practicals	Once in a						
			MCQ Seminar/Present	semester						
			ations							

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

		Mini Projects Preliminary Examination	Once in a semester	20 %		
	External Tools	End Semester Examination	Once in a semester		40%	
Indirect		Course Exit Survey/ Examiners feedback	Once in a Sem	ester		20%

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

Process to set Goal for course (effective from Second Half of 2015)

Course Outcome Attainment level is set based on previous three years' average performance levels in the university examination in that course. Process is given below:

- 1. Find out the average marks scored in each course in the last three years.
- 2. Find the number of students scoring above the average marks
- 3. This is set as middle level of goal setting [Level-2]
- 4. Depending on the trend of the result the lower level [Level-1] can be set by reducing 5% of the students score than the middle level.
- 5. The upper level [Level-3] can be set by increasing 5% of the students score than the middle level.

(Eg: Course Name: CSC305)

Process done in SH-2015

YEAR	SH-2012(OLD)	SH-2013	SH-2014	AVG of SH- 2012,SH- 2013,SH- 2014
Total Students	73	75	75	74
Total Marks	3133	3649	2676	3153
Class Average Marks (Total Marks/Total Students)	43	49	36	42
% Class Average Marks	54	61	45	53
Number of students achieved the Average Marks	43	40	32	38
% of the Number of students achieved the Average Marks	59	53	43	53

Goal Set for DS (III SEM)						
% of the student	% of marks	Level				
58%	53%	3				
53%	53%	2				
48%	53%	1				

* As Attainment Level 3 is less than 50%, Revised Goal Set is

Attainment Goal for DS SH-2015 (III SEM)						
% of the student	% of marks	Level				
60%	53%	3				
55%	53%	2				
50%	53%	1				

Change of goal setting:

The Set level will be changed if all Course Outcomes of the subject are attained the Level-3. This change in the goal can be done in two ways, either increase the average marks obtained by the students or increase the percentage of students securing more than the average marks. Since we have to bring maximum students to level-3 category, the change of average marks will set only after 90% students securing more than previous average marks. Once it is achieved increase the goal set by 2-5%

Course Outcomes

CO-ID	CO-Statement
C305.1	Demonstrate the concept of linear, nonlinear data structure
C305.2	Design an algorithm to implement stack, queue data structures and apply the concept for an application
C305.3	Design an algorithm to implement linked list data structures and apply the concept for an application
C305.4	Demonstrate the concept of tree and apply to solve the problems
C305.5	Demonstrate the concept of graph and apply to solve the problems
C305.6	Design an algorithm to implement sort and search operations

CO-PO and CO-PSO Correlation

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC305.1	3	2		1									3	1
CSC305.2	2	3	3	3							2	3	3	2
CSC305.3	2	2	3	3							2	3	3	2
CSC305.4	3		2	2								3	3	1
CSC305.5	3		2	2								2	3	1
CSC305.6	2	3	3								2	3	3	2
Average	3	3	3	2							2	3	3	2

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

Tools used for CO attainment

CO-ID	CO Statement	Tool1	Tool2
C305.1	Demonstrate the concept of linear, nonlinear data structure	Assignment Test-1	Internal Assessment-1
C305.2	Design an algorithm to implement stack, queue data structures and apply the concept for an application	Assignment Test-1	Internal Assessment-1
C305.3	Design an algorithm to implement linked list data structures and apply the concept for an application	Assignment-1	Internal Assessment-1
C305.4	Demonstrate the concept of tree and apply to solve the problems	Class Test-1	Internal Assessment-2
C305.5	Demonstrate the concept of graph and apply to solve the problems	Assignment Test-2	Internal Assessment-2
C305.6	Design an algorithm to implement sort and search operations	Assignment Test-2	MCQ-1

Question Papers used as a tools

i. Internal Assessment-1

Q. No				Marks	СО
	An	swer ar	ny five		1
	а	Exemp	olify linear and non-linear Data structures	2	
1	b	Demo	nstrate Circular and Priority Queue.	2	
1	c.	State 1	the difference between Singly Linked List and	2	(CO-1)
	d	Define	ADT for Stack. List applications of Stack	2	(33 -)
	е	List ou	2		
	f.	Exemp	2		
	An	swer ar	ny one		
	a Write a program to implement a creation of a singly				
		i)	Inserting a node at the end		
2		ii)	Delete a node last node	5	(CO-3)
	b	Write	a program to implement creation of a doubly		
		i)	Inserting a node after a specific node		
		ii)			
_	An	swer ar	ny one	_	
3	а	a Develop a C program for queue using array		5	(CO-2)
	b	Develo	op a program for evaluation of postfix expression		

ii. Internal Assessment-2

Q.			Mark	СО
No			s	
	Ar	nswer any five		
	а	Exemplify threaded binary tree.	2	
1	b	Draw Expression tree for infix expression (a+b)*(c-d)/f	2]
-	С	Explain concept of Binary Search Tree with example	2	(CO-
	d	Compare B tree with B+ tree	2	4)
	е	Exemplify Splay tree .	2	
	f	Exemplify trie data structure	2	
	Ar	nswer any one		100
2	а	Exemplify different ways to represent graph .	5	(CO- 5)
	b	Write the function for BFS Traversal of a graph. Explain its		3)
		working with an example		
	Ar	nswer any one		

$\label{lem:Agnel Charities} Agnel \textit{Charities'}$ Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

3		Apply the Huffman coding for the word MALAYALAM. Give the Huffman code for each symbol	5	(CO-
	b	Insert the following elements in AVL tree 44,17,32,78,50,88,48,62,54		4)

iii. Assignment Test-1

Q. No	Set-A	Marks	СО
1	Exemplify Different types of data structure .	5	CO-1
2	Illustrate applications of stack and queue	5	_
3	Write a program for circular queue using array	10	CO-2
Q. No	Set-B	Marks	СО
1	Write Stack ADT and explain various applications of stack	5	CO-1
2	Demonstrate different application areas of data structures	5	
3	Write a program for Postfix Evaluation	10	CO-2

iv. Assignment Test-2

Q. No	Set-A	Marks	СО
1	Apply Quick Sort with following data 50,31,71,38,77,81,12,33	5	CO-6
2	Exemplify BFS.	5	CO-5
3	Apply Radix Sort on 121,70,965,432,12,577,683	5	CO-6
4	Apply Heap Sort on 15,19,10,7,17,16	5	CO-6
Q. No	Set-B	Marks	СО
1	Apply Quick Sort 30,70,20,50,40,10,60,80	5	CO-6
2	Exemplify DFS	5	CO-5
3	Apply Heap Sort on 121,70,965,432,12,577,683	5	CO-6
4	Apply Insertion on Sort 10,5,4,12,15,11,3	5	CO-6

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

iv. Prelim Question Paper

Question	ns	Mark	СО
Q.1 a.	Exemplify Linear and Non-linear data structures .	5	CO1
Q.1 b.	State the difference between Singly linked list and Doubly list along with their application	linked 5	CO3
Q.1 c.	Write a C program for Insertion Sort	7	CO6
Q.1 d.	Define ADT with an example	3	CO1
Q. 2 a.	Construct Huffman Tree and determine the code for fol characters of word "DATASTRUCTURES"	lowing 10	CO4
Q. 2 b.	Write a C program for Postfix Evaluation	10	CO2
Q. 3 a.	Write a C program in C to implement a priority queue.	10	CO3
Q. 3 b.	Sort the elements using Radix Sort 121, 70, 965, 12,57 What are the limitations of radix sort	77,683.	CO6
	Write a C program to create "Circular Linked List" ADT. The ADT should support the Following operations	ne	
	i) Creating a Circular Linked List		
Q. 4 a.	ii) Inserting a node after a specific node	10	CO3
	iii deleting a node		
	iv) Displaying list		
Q. 4 b	Demonstrate various Graph Traversing Techniques.	10	CO5
Q. 5 a.	Demonstrate the AVL trees. Insert the following element AVL tree 27,25,23,29,35,33,34	s in a 10	CO4
Q. 5 b.	Using linear probing and quadratic probing insert the fol Values in Hash table of size 10. Show how many collisions in each techniques 99,33,23,44,56,43,19	_	CO6
Q. 6 a.	Exemplify index sequential search with a suitable example State the advantages and disadvantages of index sequences search		CO6
Q. 6 b.	Write a program in C for deletion of a node from Binary S Tree. The program should consider all the cases	Search 10	CO4

CO-Tool Marks

Roll No	Name of Student		01	CC)2	CC	03	C	D4	CC	05	CC	06		imon ols
KOII NO	Name of Student	AT-1	IA-1	AT-1	IA-1	ASS-1	IA-1	CT-2	IA-2	AT-2	IA-2	AT-2	MCQ	ESE	PRELIM
ı	Maximum Marks	10	10	10	5	10	5	20	10	5	5	15	5	80	80
101601	A Annie Grace C	6	7	2	1	8	5	8	10	4	5	6	5	56	56
101602	Agwekar Atharva Ajit	3	10	7	5	9	5	0	10	5	5	1	5	64	76
101603	Banagar Amruta N.	7	1	1	4	5	5	9	9	5	5	5	0	55	73
101604	Bhilegaonkar Madhavi	4	7	3	1	6	4	10	10	0	3	8	3	38	56
101605	Borhade Vipul Gulabrao	4	4	0	5	9	5	17	10	4	5	7	3	55	44
101606	Bothraa Siddhi R.	3	10	5	5	9	1	8	9	4	5	6	5	62	72
101607	Britto Cyrus Valerian	2	9	4	0	8	5	8	9	4	5	9	5	51	60
101608	Cherian Joel Mathew	5	8	0	1	9	5	9	10	0	5	0	0	54	37
101609	Clarence Johnson	4	8	2	0	8	4	8	8	5	4	1	5	51	37
101610	Dalvi Anuj Shrikrishna	3	10	5	4	9	0	0	8	5	4	1	5	45	55
101611	Dandona Raveena	7	9	6	1	8	3	19	8	1	5	1	5	43	75
101612	Deshpande Siddhesh S	2	8	5	5	0	4	10	9	2	5	1	5	52	76
101613	Dsouza Aditya Sanjay	5	10	8	5	9	3	0	10	5	5	1	5	66	42
101614	Dutta Piya	6	9	4	1	8	5	15	8	0	4	0	0	33	50
101615	Fernandez Ahan Nelson	2	10	7	5	9	3	10	8	5	5	1	5	53	48
101616	Freddy Poly	3	10	7	1	9	5	16	10	5	3	1	5	49	76
101617	Gavin Henry Lewis	2	10	7	3	8	5	9	10	5	5	1	5	62	46
101618	Jackson Jonathan Bob	2	9	3	1	9	2	8	7	1	1	1	5	20	34
101619	Jadhav Tejesh Prakash	6	10	8	4	0	0	0	9	4	5	5	4	46	34
101620	Jithin K Thomas	2	6	7	1	8	0	9	8	0	2	0	0	32	56
101621	Joseph Blessingh Israel	4	8	7	3	8	4	10	9	0	5	0	0	54	66
101622	Kanatt Shruti Raju	5	8	6	5	8	5	10	8	2	4	1	5	62	43
101623	Kankariya Akash Sunil	6	3	4	4	9	4	10	9	5	3	1	5	58	41
101624	Kesarwani Saumya	4	9	0	5	7	0	16	10	5	5	1	5	57	76
101625	Khattar Rajshankar S.	4	8	0	5	8	5	9	10	4	5	1	5	65	28
101626	Kochara Abishai Aswini	5	10	5	1	0	4	8	10	4	5	9	0	32	75
101627	Kulkarni Arya Deepak	7	10	7	5	8	5	0	10	2	5	1	5	61	60
101628	Magdum Kaustubh	8	10	7	5	6	2	11	10	5	5	1	5	65	75
101629	Makasare Gaurav R	5	10	8	5	9	5	10	10	4	5	1	5	56	64
101630	Mathias Jovin Vincent	3	10	0	1	8	5	8	10	5	5	1	5	57	53
101631	Mathias Sandesh Sunny	8	10	7	0	9	0	8	9	0	5	0	0	46	65
101632	Mendes Edelquinn	4	9	7	5	9	5	9	10	2	3	1	5	60	50
101633	Nair Shruthi Viju	5	8	3	5	9	4	20	10	4	5	1	5	63	70
101634	Nimmy Augustine	5	10	7	4	8	5	18	10	0	5	0	0	60	57
101635	Nirmal Babu	2	10	7	5	7	5	0	10	4	3	1	4	55	68
101636	Noronha Ryan Sunil	3	0	4	1	6	4	18	9	5	0	1	5	49	56
101637	Pai Shreya Rajendra	4	7	7	4	9	5	13	9	5	5	1	4	61	59

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

101638	Palani Salome Nelson	5	10	7	4	1	5	14	8	5	5	6	5	64	46
101639	Parab Omkar Tulsidas	2	9	7	5	9	0	0	10	5	4	1	5	54	69
101640	Patel Naeem	4	10	7	0	5	5	0	10	0	3	9	5	63	71
101641	Patel Srujan	. 7	9	4	4	9	5	18	9	0	5	0	0	62	52
101642	Patil Anuja Dilip	4	9	1	5	9	4	11	9	5	5	1	5	62	56
101643	Patil Vaibhav Prakash	6	9	5	4	9	4	8	10	0	5	0	0	61	61
101644	Pereira Terrell Russel	8	10	7	0	7	5	10	10	0	5	9	0	50	65
101645	Philip Prasun Alexander	5	7	7	0	9	5	17	10	5	5	1	5	62	57
101646	Pushkarna Himanshu A.	3	10	2	4	9	5	0	10	4	1	1	5	41	74
101647	Reddy C Sai Vivaswanth	3	10	3	0	8	5	12	10	4	3	1	5	61	45
101648	Roselyn Lorson	0	5	6	6	7	7	6	19	5	7	6	7	31	19
101649	Shetty Shubham Dinesh	1	4	7	7	7	6	4	19	7	7	7	7	35	35
101650	Shinde Ankita Vijay	1	0	5	5	7	7	1	16	5	7	6	7	31	9
101651	Shinde Shantanu S.	2	0	5	7	7	7	0	10	7	7	7	5	50	1
101652	Shingate Kranti Bhau	1	5	5	5	7	6	0	11	7	7	6	5	46	6
101653	Singh Siddarth Satbir	0	2	6	7	7	6	4	13	7	7	7	7	41	18
101654	Sohi Yashveer Singh	6	4	6	5	7	6	0	12	5	5	6	7	47	11
101655	Srivastava Animesh N.	3	3	6	7	7	7	1	20	7	7	7	7	46	17
101656	Tanya Serah Jacob	4	14	8	6	7	7	0	19	7	7	7	5	45	38
101657	Telang Shruti Vikas	2	8	5	6	7	5	0	8	7	7	6	5	36	8
101658	Tiwari Dipak Kamlesh	9	14	8	7	7	5	7	20	7	7	7	7	24	69
101659	Varghese Jacob	1	10	5	6	7	7	4	19	5	7	6	7	32	46
101660	Vellikkara Harun Joe	0	4	5	7	7	7	1	17	7	7	7	7	44	17
101661	Verma Pragya Surendra	0	4	6	6	7	7	0	13	5	6	6	5	11	6
101662	Waghmare Ashriel S.	0	6	5	7	5	6	0	12	7	6	7	5	21	15
101663	Waghulade Mithilesh R.	1	13	5	5	7	7	4	16	5	7	6	7	42	27
101665	Jadhav Amey	1	9	5	7	7	6	2	11	7	6	7	7	36	33
101666	Patil Manali	0	3	5	6	7	6	6	13	7	7	6	5	37	14

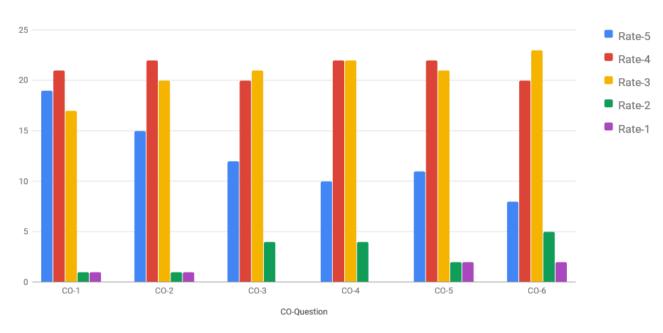
Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

<u>Calculations</u>

		Course Ou	utcome '1'			Course O	utcome '2'		
Total Student			the concept r data struc		Illustrate and apply the concept of stac queue data structure in various applications.				
Present in semester 3	Assignme	ent Test-1		rnal ment-1	Assignme	ent Test-1	he concept of stack, cture in various tions. Internal Assessment-1 Total % of Students		
semester 5	Total	% of	Total	% of	Total	% of	Total	% of	
	Students	Students	Students	Students	Students	Students	Students	Students	
	acheived	acheived	acheived	acheived	acheived	acheived	acheived	acheived	
	Goal	Goal	Goal	Goal	Goal	Goal	Goal	Goal	
65	19	29.23%	61	93.85%	25	38.46%	41	63.08%	

		Course Ou	utcome '3'			Course Ou	utcome '4'		
	Illustrate	and apply t	he concept	of linked	Demons	strate and a	pply the co	ncept of	
	list data s	structure in	various app	lications.	tree data structure in various application				
Total Student	Accion	ment-1	Inte	rnal	Class ⁻	Toct 1	Internal		
Present in	Assigni	ment-1	Assessi	ment-1	Class	1621-1	Assess	ment-2	
semester 3	Total	% of	Total	% of	Total	% of	Total	% of	
	Students	Students	Students	Students	Students	Students	Students	Students	
	acheived	acheived	acheived	acheived	acheived	acheived	acheived	acheived	
	Goal Goal		Goal	Goal	Goal	Goal	Goal	Goal	
65	56	86.15%	51	78.46%	23	35.38%	65	100%	

		Course Ou	utcome '5'			Course Ou	utcome '6'			
	Demons	trate the co	ncept of gr	aph data	Illustrate the understanding of sort and					
		struc	ture.		search algorithms.					
Total Student Present in	Assignme	ent Test-2	1	rnal ment-2	Assignme	ent Test-2	MCQ-1			
semester 3	Total	% of	Total	% of	Total	% of	Total	% of		
	Students	Students	Students	Students	Students	Students	Students	Students		
	acheived	acheived	acheived	acheived	acheived	acheived	acheived	acheived		
	Goal	Goal	Goal	Goal	Goal	Goal	Goal	Goal		
65	42	64.62%	58	89.23%	45	69.23%	50	76.92%		


	To	ol1	To	ol3
Total Student Present in	End Seme	ster Exam	Prelim	Exam
semester 3	Total	% of	Total	% of
Scilicater 5	Students	Students	Students	Students
	acheived	acheived	acheived	acheived
	Goal	Goal	Goal	Goal
65	54	83.08%	55	85%

<u>Summary of Course Exit Survey</u>

					Rati	ng Pe	rcenta	ge					
CO-	Course Outcome				No of	stud	ents ra	ted				Average	CO-
QUE	Question	'5'	%	'4'	%	'3'	%	'2'	%	'1'	%	%	Question Attainment
		Total number of students given Course Exit Survey								'60'			
1	Rate yourself based on understanding of the concept of linear, nonlinear data structure	19	32%	21	35%	17	28%	1	2%	1	2%	78%	3
2	Rate yourself based on ability of designing an algorithm to implement stack, queue data structures and apply the concept for an application	15	25%	22	37%	20	33%	1	2%	1	2%	75%	3
3	Rate yourself based on ability of designing an algorithm to implement linked list data structures and apply the concept for an application	12	20%	20	33%	21	35%	4	7%	0	0%	70%	3
4	Rate yourself based on understanding of the concept of tree and apply to solve the problems	10	17%	22	37%	22	37%	4	7%	0	0%	71%	3
5	Rate yourself based on understanding the concept of graph and apply to solve the problems	11	18%	22	37%	21	35%	2	3%	2	3%	71%	3
6	Rate yourself based on ability of designing an algorithm to implement sort and search operations	8	13%	20	33%	23	38%	5	8%	2	3%	67%	2

Course Exit Survey

Goal Set (SH-2017)

% of Marks	% of Student	Attainment Level
53%	55%	1
53%	60%	2
53%	65%	3

Summary of Course Assessment Calculation

			In	iternal As	sessment			Exte Asses		
CO-		Dire	ct Assessm	ent	Indirect Assessm ent	Int.	Int. Attain ment	Ext	Ext	Final Attain
ID	Course Outcome	Tool1	Tool2	Prelim	Course Exit	Attain ment %		Attainm ent %	Attainm ent Level	ment Level
		80)%	20%	Survey	/6	Level		Level	
			80%		20%					
				60	%	ı		40)%	
C305.	Demonstrate the concept of linear,	AT-1	IA-1							
1	nonlinear data structure	29.23%	93.85%	85%	78%	68.58	2	83.08%	3	2.4
C305.	Design an algorithm to implement stack, queue data	AT-1	IA-1							
2	structures and apply the concept for an application	38.46%	63.08%	85%	75%	61.1	1	83.08%	3	1.8
	Design an algorithm to implement	AT-1	IA-1							
C305.	linked list data structures and apply the concept for an application	86.15%	78.46%	85%	70%	80.28	3	83.08%	3	3
C305.	Demonstrate the concept of tree and apply to solve the	CT-1	IA-2	85%	71%	71.12	3	83.08%	3	3
	problems	35.38%	100%							
C305.			IA-2	85%	71%	77.03	3	83.08%	3	3
	the problems	64.62%	89.23%							
0005	Design an algorithm		MCQ-1							
C305. 6	to implement sort and search operations	69.23%	76.92%	85%	67%	73.77	3	83.08%	3	3

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

CO-PO and CO-PSO Attainment

COs	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CSC305.1	2.4	2.4		2.4									2.4	2.4
CSC305.2	1.8	1.8	1.8	1.8	1.8						1.8	1.8	1.8	1.8
CSC305.3	3	3	3	3	3						3	3	3	3
CSC305.4	3		3	3								3	3	3
CSC305.5	3		3	3								3	3	3
CSC305.6	3	3	3								3	3	3	3
Average	2.7	2.6	2.8	2.6	2.4						2.6	2.8	2.7	2.7

Attainment of Program Outcomes and Program Specific Outcomes

Attainment of POs and PSOs:

Assessment tools are categorized into **Direct and Indirect** methods to assess the program outcomes. **80% weightage is given to direct methods and 20% to indirect methods.**

- Direct methods display the students' knowledge and skills from their performance in the various academic activities like Internal Assessment Exams, End–Semester Examinations, Assignment/Class Tests, Presentations, and Home Assignments, Quizzes, Practicals etc. These methods provide a sampling of what students know and/or can do and provide strong evidence of student learning. Average of CO-PO attainment of all the courses is considered as direct method assessment tool for PO attainment.
- Indirect methods such as surveys and interviews of the stakeholders to reflect on student's learning. They assess opinions or thoughts about the graduates' knowledge or skills valued by different stakeholders. The various indirect tools are:
 - Program Exit Survey
 - Surveys conducted on Co-curricular and Extra-curricular activities (PO6 and PO7).

The average of PO attainment of all surveys is considered for calculating the PO attainment. the following figure 1 shows the various methods/tools used for calculating the PO attainment along with weightage given to each method.

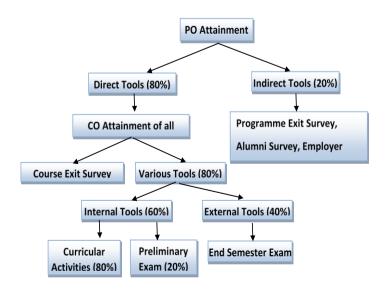


Figure 1: List of Program Assessment tools

The Programme outcomes are difficult to measure such as assessing critical thinking, creativity, analytical skills, and problem solving etc. Hence the department has adopted Criterion Referenced Rubrics to assess the POs. The Rubric criteria are developed by department faculty and distributed to students before being evaluated so that they are aware of the performance criteria and their weightage.

The methods/tools used for the assessment process that periodically documents and demonstrates the degree to which the Programme Outcomes are attained are shown below including the information on:

- a) Listing and description of the assessment processes used to gather the data, and
- b) The frequency with which these assessment processes are carried out.

Table 1: Direct Assessment tool used for PO attainment

Sr. No.	Direct Assessment Method	Assessment frequency	Description
1.	CO attainment of	Once in a	Minimum two internal tools (internal assessment
	all courses	Semester	test, class/assignment test, seminar, quiz, practical,
			mini project etc.) are used to find the attainment of
			each course outcome along with the performance
			of the students in preliminary exams and end
			semester exams. the weightage provided for that is
			80%. Course exit survey is also considered for the
			attainment, that is conducted at the end of the
			semester and 20% weightage is given for that.

Table 2: Indirect Assessment tool used for PO attainment

Sr.	Indirect	Assessment	Method Description
No.	Assessment	frequency	
	Method		
1	Alumni Survey	Once in two	Collect variety of information about program
1		years	outcomes from the Alumni students.
2	Program Exit	Once in a	Collect variety of information about program
2	Survey	year	outcomes from the outgoing students
3	Employer Survey	Once in two	Collect variety of information about the
3		years	graduates' skills, capabilities and opportunities
	Survey on Co and	Once in a	Collect variety of information on students
4	Extra-curricular	year on all	capabilities and opportunities.
	activities	activities	

The attainment of Course outcomes of every course is directly mapped to Program Specific Outcomes.

PO Attainment of Academic Year of 2018-2019 (computer Engineering Dept.)

Subject	Subject	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
Code	Name	1	2	3	4	5	6	7	8	9	0	1	2	1	2
FEC101	AM-I	3	3			3									
FEC102	AP-I	3	3		3		3	3					3		
FEC103	AC-I	3					3	3					3		
FEC104	EM	3	3										3		
FEC105	BEE	2.5	2.6		2.6					2.5					
FEC106	EVS	3		-			3	3	3			-			

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

FEC201	AM-II	2.9	2.9			3									
FEC202	AP-II	3	3				3								
FEC203	AC-II	2.8					2.8	3			3		3		
FEC204	ED	3	3			3							3		
FEC205	SPA	3	3	3											
FEC206	CS					3	3			3	3	3	3		
CSC301	AM -III	3	3										3	3	
CSC302	DLDA	3	3	3		3							3	3	3
CSC303	DIS	3	3	3				-					3	3	
CSC304	ECCF	2.6	2.6								2.6				2.6
CSC305	DS	2.6	2.7	2.4	3								3	2.7	2.7
CSL301	DSL	2.7	3	3		3		-					3	2.8	3
CSL302	BEL	1.6	1.6					-							1.6
CSL303	DSL	2.2	2.2	2.2				-				2.2	2.2	2.2	2.2
CSL304	OOPL	2.5	2.6	2.6	3	3		-					2.4	2.6	2.6
CSC401	AM-IV	2.2	2.2					-						2.2	
CSC402	AOA	3	3	3		3						3	3		
CSC403	COA	1.2	1.4	1		1.4		-					1		
CSC404	CG	3	3	3	3			-					3	3	3
CSC405	OS	1	1	1	1			-					1	1	1
CSL401	AOAL		3	3				-				3	3	3	3
CSL402	CGL	3	3	3	3	3			3	3	3	3	3	3	3
CSL403	PAL	1	1	1		1		-					1	1	
CSL404	OSL	1	1	1		1		-					1	1	1
CSL405	OSTL	1.5		1.5	1.5	1.5		-					1.5	1.5	1.5
CPC501	MP	1.6	1.6	1.6									1		1.6
CPC502	OS	2.4	2.4	3				-					2.3	2.4	2.6
CPC503	SOOAD	3	3	3	3				3			3	3	3	3
CPC504	CN	3	3	3		3							3	3	3
CPL501	WTL	3	3	3	3	3			1.8	1.8	1.8	1.8	2.4	2.8	1.8
CPL502	BCE						3		3	3	3	3	3	3	3
CPC601	SPCC	2.9	3	2.9		3							2.8	2.9	2.9
CPC602	SE	2.2	2.2	1.6	1	1.8	1.6		2.2	1.8		1.6	2.2		2
CPC603	DD	2.2	1.6	2.2					1			1.8	2.2	2	2
CPC604	MCC	3	3	3		3							3	3	3

$\label{lem:Agnel Charities} Agnel \textit{Charities'}$ Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

CPE6011	SPM	2.2			2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2		2.2
CPL601	NPL		1	1		1			1	1	1		1	1	1
CPC701	DSP	3	3												
CPC702	CSS	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2				2.2	2.2	2.2
CPC703	Al	1	1.3	1.3	1.6	1.2	1	1.6					1.2	1.3	1.3
CPE70425	SC	3	3	3		3							3	3	3
CPE70426	ERP	3	3	3	3	3					3		3	3	3
CPP701	PROJEC T I		2.9		2.9	2.9	2.9							2.9	2.9
CPL701	NTAL		2.8	2.8	2.4	2.8			2.8	2.8	2.8		2.8		
CPC801	DWDM	2	1.6	1.6	2.2	2.2							2.2		
CPC802	НМІ	2.2	2.2	2.2	2.2	2.2	2.2						2.2	2.2	2.2
CPC803	PDS	2.2	2.2	2.2	2.2	2.2						2.2	2.2	2.2	2.2
CPE8031	ML	1.1	1.1	1.2	1.1	1.2							1.1	1.1	1.2
CPE8035	BDA	2.2	2.2	2.2		2.2				2.2			2.2	2.2	2.2
CPP802	PROJEC T II							3	3	3	3	3	3	3	3
CPL801	CCL	1.6	1.7	1.6		1.5	1			1	1	1	1.4		
Direct Atta		2.4	2.4	2.3	2.2	2.2	2.6	2.7	2.4	2.4	2.5	2.5	2.3	2.4	2.3
Indirect	Progra m Exit Survey (50%)	3	3	3	3	3	3	3	3	3	3	3	3		
Indirect Attainme nt (20%)	Extra Curricu lar Actviti es (50%)							-	2	3	3	3	3		
Average At	tainment	2.5	2.5	2.4	2.3	2.3	2.6 8	2.7 6	2.4	2.5	2.6	2.6	2.4	2.4	2.3

PSO Attainment of Academic Year of 2018-2019 (computer Engineering Dept.)

Subject Code	Subject Name	PSO1	PSO2
FEC101	APPLIED MATHEMATICS-I	3	
FEC102	APPLIED PHYSICS-I	3	
FEC103	APPLIED CHEMISTRY -I	3	
FEC104	ENGINEERING MECHANICS	3	
FEC105	BASIC ELECTRICAL ENGINEERING	2.5	
FEC106	ENVIRONMENTAL STUDIES	3	
FEC201	APPLIED MATHEMATICS-II	2.9	
FEC202	APPLIED PHYSICS-II	3	
FEC203	APPLIED CHEMISTRY-II	2.8	
FEC204	ENGINEERING DRAWING	3	
FEC205	STRUCTURED PROGRAMMING APPROACH	3	3
FEC206	COMMUNICATION SKILLS		3
CSC301	APPLIED MATHEMATICS -III	3	
CSC302	DIGITAL LOGIC DESIGN AND ANALYSIS	3	3
CSC303	DISCRETE STRUCTURES	3	
CSC304	ELECTRONIC CIRCUITS AND COMMUNICATION FUNDAMENTALS		2.6
CSC305	DATA STRUCTURES	2.7	2.7
CSL301	DIGITAL SYSTEM LAB	3	3
CSL302	BASIC ELECTRONICS LAB		2.2
CSL303	DATA STRUCTURE LAB	2.2	2.2
CSL304	OOPM(JAVA) LAB -	2.6	2.6
CSC401	APPLIED MATHEMATICS-IV	2.2	
CSC402	ANALYSIS OF ALGORITHMS	3	3
CSC403	COMPUTER ORGANIZATION AND ARCHITECTURE	2	
CSC404	COMPUTER GRAPHICS	3	3
CSC405	OPERATING SYSTEM	1.8	1.8
CSL401	ANALYSIS OF ALGORITHMS LAB	3	3
CSL402	COMPUTER GRAPHICS LAB	3	3
CSL403	PROCESSOR ARCHITECTURE LAB	2.6	
CSL404	OPERATING SYSTEM LAB	2.6	2.6
CSL405	OPEN SOURCE TECH(PYTHON & PERL) LAB	2.2	2.2
CPC501	MICROPROCESSOR		1.6
CPC502	OPERATING SYSTEMS	2.4	2.6
CPC503	STRUCTURED AND OBJECT ORIENTED ANALYSIS AND DESIGN	3	3
CPC504	COMPUTER NETWORKS	3	3
CPL501	WEB TECHNOLOGIES LABORATORY	2.8	1.8
CPL502	BUSINESS COMMUNICATION AND ETHICS	3	3
CPC601	SYSTEM PROGRAMMING AND COMPILER CONSTRUCTION	2.9	2.9
CPC602	SOFTWARE ENGINEERING		3

Fr. C. Rodrigues Institute of Technology, Vashi, Navi Mumbai.

CPC603	DISTRIBUTED DATABASES	2	2
CPC604	MOBILE COMMUNICATION AND COMPUTING	3	3
CPE6011	SOFTWARE PROJECT MANAGEMENT		3
CPL601	NETWORK PROGRAMMING LABORATORY	2.8	2.7
CPC701	DIGITAL SIGNAL PROCESING	3	1
CPC702	CRYPTOGRAPHY AND SYSTEM SECURITY	2.2	2.2
CPC703	ARTIFICIAL INTELLIGENCE	2.1	2.1
CPE70425	SOFT COMPUTING	3	3
CPE70426	ENTERPRISE RESOURCE PLANNING & SUPPLY CHAIN MANAGEMENT	3	3
CPP701	PROJECT I	2.7	2.7
CPL701	NETWORK THREATS AND ATTACKS LABORATORY	2.8	2.8
CPC801	DATA WAREHOUSE AND MINING	2.9	3
CPC802	HUMAN MACHINE INTERACTION	3	3
CPC803	PARALLEL AND DISTRIBUTED SYSTEMS	2.2	2.2
CPE8031	MACHINE LEARNING	2.2	2.3
CPE8035	BIG DATA ANALYTICS	2.2	2.2
CPP802	PROJECT II	2.7	2.7
CPL801	CLOUD COMPUTING LABORATORY	3	3
	Average	2.7	2.7