Agnel Charities'

Fr. C. Rodrigues Institute of Technology

Sector 9A, Vashi, Navi Mumbai, 400703, Maharashtra, India

www.fcrit.ac.in

An Autonomous Institute Affiliated to the University of Mumbai

Department of Electrical Engineering

Curriculum Structure Master of Technology in Electrical Engineering

(Power Electronics and Drives)

&

First and Second Year Syllabus

Prepared by : Board of Studies for Department of Electrical Engineering

Approved By: Academic Council of Fr. C. Rodrigues Institute of Technology

Revision: 2024

Effective from :2024-25

A. Abbreviations

PED	Power Electronics and Drives
PEDC	Core Course
PEDPE	Program Eective
PEDIE	Institute Eective
PEDL	Lab Course
PEDSBL	Skill based Lab
PEDMP	Major Project
PEDOCC	Online Credit Course

B. Credit Structure

M. Tech in Power Electronics and Drives									
Type of Course	Semester-wise Credit Distribution								
Type of Course	Ι	II	Ш	IV	Total				
Core Course (PEDC)	6	6			12				
Program Eective (PEDPE)	6	6			12				
Institute level Eective (PEDIE)	3	3			06				
Lab Course (PEDL)	1	1			02				
Skill based Lab (PEDSBL)	2	2			04				
Major Project (PEDMP)			10	16	26				
Online Credit Course (PEDOCC)			6		06				
Total Credits	18	18	16	16	68				

C. Scheme

Semester I

						-			
Course	Course Name	Tea	ching So H	cheme (Co ours)	ontact	Credits Assigned			
Code		Theo	ry	Pract.	Tut.	Theory	Pract.	Tut.	Total
PEDC101	Electrical Drives and its Application	3				3			3
PEDC102	Power Electronic Converters	3				3			3
PEDPE101X	Program Elective 1	3				3			3
PEDPE102X	Program Elective 2	3				3			3
PEDIE101X	Institute Elective 1	3				3			3
PEDL101	Drives And Control Lab			2			1		1
PEDSBL101	Skill Based Lab-I Power Electronics System Design Lab			4 ^{\$}			2		2
Total		15		06		15	03		18
					Examinati	on Scheme			
C	Course Name			Theor	y			n	
Code		Internal Asso		sment	End	Exam.	Term	rrac	Total
Couc		Test-1	Test-2	Avg	Sem. Exam	Duration (in Hrs)	Work	Oral	10(41
PEDC101	Electrical Drives and Application	20	20	20	80	3			100
PEDC102	Power Electronic Converters	20	20	20	80	3			100
PEDPE101X	Program Elective 1	20	20	20	80	3			100
PEDPE102X	Program Elective 2	20	20	20	80	3			100
PEDIE101X	Institute Elective 1	20	20	20	80	3			100
PEDL101	Drives And Control Laboratory						25	25	50
PEDSBL101	Skill Based Lab-I Power Electronics						50	50	100
	System Design Lab			100	100				6.50

Program Elective - 1

PEDPE1011: Machine Learning Techniques in Power System PEDPE1012: Power Quality in Power System PEDPE1013: Electric Vehicle Technology

Program Elective - 2 PEDPE1021: Digital Signal Controller PEDPE1022: Micro-grid Technology PEDPE1022: IoT application in Electrical Engineering

Institute Elective-1

PEDIE1011: Reliability Engineering

PEDIE1012: Cyber Security and Laws

PEDIE1013: Energy Audit and Management

PEDIE1014: Operation Research

Semester	Π
----------	---

Course		Teaching Scheme(Contact				Credits Assigned						
Code	Course Name		H	ours)	I		Ci cuits As	signeu				
Coue		Theo	ry	Pract.	Tut.	Theory	Pract.	Tut.	Total			
PEDC201	Advanced Power Electronics	3				3			3			
PEDC202	Digital Control of Electrical Drives	3				3			3			
PEDPE201X	Program Elective 3	3				3			3			
PEDPE202X	Program Elective 4	3				3			3			
PEDIE201X	Institute Elective 2	3				3			3			
PEDL201	DSP Applications Lab			2			1		1			
PEDSBL201	Skill Based Lab-II Design of Large PED Systems			4 ^{\$}			2		2			
	Total	15		06		15	03		18			
			Examination Scheme									
Course				Theory	y			D				
Course Code	Course Name	Intern	al Asse	Theory ssment	y End	Exam.	Term	Prac	Total			
Course Code	Course Name	Intern Test-1	al Asse Test-2	Theory ssment 2 Avg	End Sem. Exam	Exam. Duration (in Hrs)	Term Work	Prac / Oral	Total			
Course Code PEDC201	Course Name Advanced Power Electronics	Intern Test-1 20	al Asse Test-2 20	Theory ssment 2 Avg 20	End Sem. Exam 80	Exam. Duration (in Hrs) 3	Term Work	Prac / Oral	Total 100			
Course Code PEDC201 PEDC202	Course Name Advanced Power Electronics Digital Control of Electrical Drives	Intern Test-1 20 20	Test-2 20 20	Theory ssment 2 Avg 20 20 20 20	End Sem. Exam 80 80	Exam. Duration (in Hrs) 3 3	Term Work 	Prac / Oral 	Total 100 100			
Course Code PEDC201 PEDC202 PEDPE201X	Course Name Advanced Power Electronics Digital Control of Electrical Drives Program Elective 3	Intern Test-1 20 20 20	al Asse Test-2 20 20 20	Theory ssment 2 Avg 20 20 20 20	End Sem. Exam 80 80 80	Exam. Duration (in Hrs) 3 3 3 3	Term Work 	Prac / / Oral	Total 100 100 100			
Course Code PEDC201 PEDC202 PEDPE201X PEDPE202X	Course Name Advanced Power Electronics Digital Control of Electrical Drives Program Elective 3 Program Elective 4	Intern Test-1 20 20 20 20 20	al Asse Test-2 20 20 20 20	Theory ssment 2 Avg 20 20 20 20 20 20 20 20	y End Sem. Exam 80 80 80 80 80	Exam. Duration (in Hrs) 3 3 3 3 3 3	Term Work 	Prac / Oral 	Total 100 100 100 100			
Course Code PEDC201 PEDC202 PEDPE201X PEDPE202X PEDIE201X	Course Name Advanced Power Electronics Digital Control of Electrical Drives Program Elective 3 Program Elective 4 Institute Elective 2	Intern Test-1 20 20 20 20 20 20	al Asse Test-2 20 20 20 20 20 20	Theory ssment 2 Avg 20 20 20 20 20 20 20 20 20 20 20 20 20 20	y End Sem. Exam 80 80 80 80 80 80	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 3	Term Work 	Prac / / Oral 	Total 100 100 100 100 100 100			
Course Code PEDC201 PEDC202 PEDPE201X PEDPE201X PEDIE201X PEDL201	Course Name Advanced Power Electronics Digital Control of Electrical Drives Program Elective 3 Program Elective 4 Institute Elective 2 DSP Applications Laboratory	Intern Test-1 20 20 20 20 20 20 	al Asse Test-2 20 20 20 20 20 20 	Theory ssment 2 Avg 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	y End Sem. Exam 80 80 80 80 80 	Exam. Duration (in Hrs) 3 3 3 3 3 3 	Term Work 25	Prac / Oral 25	Total 100 100 100 100 50			
Course Code PEDC201 PEDC202 PEDPE201X PEDPE202X PEDIE201X PEDL201 PEDSBL201	Course Name Advanced Power Electronics Digital Control of Electrical Drives Program Elective 3 Program Elective 4 Institute Elective 2 DSP Applications Laboratory Skill Based Lab-II Design of Large PED Systems	Intern Test-1 20 20 20 20 20 	al Asse Test-2 20 20 20 20 20 	Theory ssment 2 Avg 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 100 100	y End Sem. Exam 80 80 80 80 80 	Exam. Duration (in Hrs) 3 3 3 3 3 3 	Term Work 25 50 75	Prac / Oral 25 50	Total 100 100 100 100 100 100 100 100 100 100 100 100 50 100			

Note 1: Skill Based Lab- I and II are focused on the learning through experience. SBL shall facilitate the learner to acquire the fundamentals of practical engineering in his or her specialization in a project-oriented environment. The learning through skill based labs can be useful in facilitating their research work and hence useful in early completion of their dissertation work.

Program Elective - 3

PEDPE2011: Power Electronics in Power Systems

PEDPE2012: Industrial Load Modeling and Control

PEDPE2013: DSP Applications in Power Conversion Systems

Program Elective - 4

PEDPE2021: Design of Electric Vehicle System

PEDPE2022: Design of Power Converters

PEDPE2023: Power Converters for Renewable Energy

Institute Elective - 2

PEDIE2011: Environmental Management

PEDIE2012: Entrepreneurship Development

PEDIE2013: Finance Management

PEDIE2014: Project Management

Semester III

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned				
Code		Theor	•y 1	Pract.	Tut.	Theory	Pract.	Tut.	Total	
PEDMP301	Major Project: Dissertation -I			20			10		10	
Total		00		20	00	00	10		10	
	Course Name	Examination Scheme								
Course		Theory								
Code		Internal Assessment End			End	Exam.	Term Work	Pract/ Oral	Total	
		Test-1	Test-2	Avg	Sem. Exam	Duration (in Hrs)	,, 0111			
PEDMP301	Major Project: Dissertation -I						100		100	
Total							100		100	

Online Credit Courses

Course	Course Name	Teac (Cor	hing Scher 1tact Hour	ne s)	Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
PEDOCC301	Online Credit Course - I							3
PEDOCC301	Online Credit Course - II							3
Total					00	00	00	06

Note 2: It is mandatory to complete the Online Credit Courses (OCC) available on NPTEL / Swayam /MOOC or similar platform approved by BOS. These two courses shall be completed in any semester I or II or III, but not later end of the Semester III. College shall make a provision that credits earned with OCC-I and OCC-II shall be accounted in the third semester grade-sheet with actual names of courses. The learner shall be allowed to take up these courses from his or her institute or organisation/ industry where his / her major project is carried out. The students shall complete the courses and shall qualify the exam conducted by the respective authorities/ instructor from the platform. The fees for any such courses and the corresponding examination shall be borne by the learner.

Online Credit Course – I

The learner shall opt for the course in the domain of Research Methodology **or** Research & Publication Ethics or IPR. The opted course shall be of 3 credits of equivalent number of weeks.

Online Credit Course –II

The learner shall opt for the course recommended by Faculty Advisor/ Project Supervisor from the institute. The opted course shall be of 3 credits of equivalent number of weeks.

			Sei	mester l	V				
Course	Course Name	T (Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theo	ory	Pract.	Tut.	Theory	Pract.	Tut.	Total
PEDMP401	Major Project: Dissertation -II			32			16		16
Total				32			16		16
	Course Name	Examination Scheme							
Course		Theory							
Code		Interna	al Asses	ssment End		Exam.	Term Work	Pract/	Total
		Test-1	Test-2	2 Avg	Sem. Exam	(in Hrs)	Work	Orai	
PEDMP401	Major Project: Dissertation -II						100	100	200
	Total						100	100	200

Note 3: The Dissertation-II submission shall not be permitted till the learner completes all the requirements of M. Tech course.

Note 4: The contact hours for the calculation of load of the teacher for Major Project are as follows: Major Project Dissertation I and II - 02 Hour / week / student

D. Syllabi First & Second Year

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I									
Subject code	Subject Name	Teaching s (Contact H	cheme Iours)	Credits Assigned					
PEDC101	Electrical Drives and Application	Theory	Pract./Tut.	Theory	Pract./Tut.	Total			
		3		3		3			

Subject code		Examination Scheme								
	Subject Name	Internal Assessment			End Sem. Exam	Exam Duration (in Hrs)	Term Work	Pract/ Oral	Total	
		Test 1	Test 2	Avg						
PEDC101	Electrical Drives and Application	20	20	20	80	3	-	-	100	

Course Objectives	To impart knowledge on1. Modelling and control of various machines2. Drives in various applications
Course Outcomes	 Upon successful completion of this course, the learner will be able: To develop mathematical model of an electrical machine. To analyse scalar control schemes of induction motor. To analyse vector control schemes of induction motor. To analyse the control of PMSM, SyRM and BLDC motors. To identify the motors, power modulators and the control schemes used in various applications.

Module	Details	Hours
Module I	Electrical Machine Modelling: Modelling of DC Machine: Voltage and Torque equations, Time domain block diagram of DC shunt Machine, Modelling of AC Machine: Three Phase to Two Phase Transformation, Inverse Transformation, commonly used Reference Frames. Voltage and Torque equations, Dynamic model of Induction Machine.	08
Module II	Scalar Control of Induction Motor: Variable voltage and Variable Frequency Operation of Three Phase Symmetrical Induction Machine, Drive Operating Regions, Different Scalar Control Schemes with block diagrams (Voltage fed Inverter Control and Current fed Inverter Control)	06
Module III	Vector Control and Direct Torque Control of Induction Motor: Introduction, Direct or Feedback Vector Control, Flux Vector Estimation, Indirect or Feed Forward Vector Control, Stator Flux Oriented Vector Control, Sensorless Vector Control, Direct Torque and Flux Control (DTC), Adaptive Control: MRAC, Fuzzy logic control	08
Module IV	Control of PMSM, BLDC Motor and Synchronous Reluctance Motor (SyRM): PMSM: V/Hz control, Self-Control Model, Vector control, Speed Control of BLDC Motor. Construction details and speed control of SyRM	06
Module V	Domestic and Industrial Applications: Domestic applications of Drives and Control: Ceiling fan with single phase induction motor/BLDC motor, Refrigerator, Washing Machine, Air Conditioner, Mixer grinder. Industrial Application: Drives in Cement factory, Steel Industry, Rolling Mills, Pumps, Blower Fans, Conveyors, Cranes and Lifts	06
Module VI	Electrical Drives in Electric Vehicle Applications:	05

Block Diagram of a typical EV powertrain. Power/Energy Supply Requirements for EV	
applications, Machines used for Propulsion Applications and Basic Control Schemes -	
Induction Motor, PMSM, BLDC motor, SyRM, SRM.	

- 1. Modern Power Electronics and A.C. Drives, B. K. Bose, Prentice Hall PTR.
- 2. Electric Motor Drives: Modeling, Analysis and Control, Krishnan.R, PHI.
- 3. First Course on Electrical Drives by S. K. Pillai, New Age International
- 4. Electrical Drives: Concepts and Applications by Vedam Subramanyam, T.M.H

Reference Books:-

- 1. Analysis of Electric Machinery P.C. Krause, McGraw Hill, New York
- 2. Power Semiconductor Controlled Drives, G. K. Dubey, Prentice-Hall International.
- 3. D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, 1996.
- 4. Power Electronics by Muhammad H. Rashid, Pearson
- 5. Control of Electrical drives, W. Leonhard, Springer-Verlag.
- 6. John Chiasson, Modelling and High Performance Control of Electric Machines, Wiley- IEEE Press, 2005.
- 7. I. Boldea, S. A. Nasar, Vector Control of AC Drives, CRC Press, 1992.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Subject code	Subject Name	Teaching s (Contact H	Credits Assigned				
PEDC102	Power Electronic Converters	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
		3		3		3	

	Subject Name	Examination Scheme								
		Theory								
Subject code		Internal Assessment		End Sem. Exam	Exam Duration (in Hrs)	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg						
PEDC102	Power Electronic Converters	20	20	20	80	3	-	-	100	

	To impart knowledge on
Course Objectives	1. To understand and acquire knowledge about various power semiconductor devices related to
	its characteristics, ratings, protection and to select semiconductor devices for various applications
	2. To introduce different methods of power conversion such as ac to dc, dc to dc, dc to ac the
	underlying principles of converter operation and hence to analyze different converter circuits
objectives	for power conversion.
	3. To keep abreast with the latest technologies and research going on in different areas related to
	power electronics.
	4. To enhance the capability of problem solving skills.
	Upon successful completion of this course, the learner will be able to
	Upon successful completion of this course, the learner will be able toSelect and design power electronic converter topologies for a broad range of energy
	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications.
	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and
Comme	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and understand their applications.
Course	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and
Course Outcomes	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial
Course Outcomes	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications, extraction of energy from renewable sources.
Course Outcomes	 Upon successful completion of this course, the learner will be able to Select and design power electronic converter topologies for a broad range of energy conversion applications. Ability to analyze various single phase and three phase power converter circuits and understand their applications. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications, extraction of energy from renewable sources. Determine the drive circuit requirements in terms of electrical isolation and design heat sink,

Module	Details	Hrs
Module I	Power semiconductor Devices Review of Power Devices: SCR, BJT, MOSFET, IGBT, Safe operating Limits, selection of devices for various applications, Conduction and Switching losses, numericals, Wide band gap devices (WBC): SiC, GaN devices.	07
Module II	Drive circuits and Protection: Gate drive requirements, Types of driver circuits, Driver ICs, Driver circuit requirements for WBC devices. Protection circuits: Snubber circuits and its design, temperature control and heat-sinks, numericals.	06
Module III	DC to DC converters Analysis of various conduction modes of 2 nd order converters: Buck, Boost, Buck-Boost converters, Introduction to 4 th order converters: Cuk and SEPIC converters in CCM, waveforms, output voltage derivation, comparison of dc to dc converters, numericals, Introduction to interleaved dc-dc converters.	08
Module IV	Power factor and power decoupling in Rectifiers	06

	Causes for poor power factor in diode rectifiers, effect of power factor on firing angle in	
	thyristor rectifiers, Single phase PWM rectifiers and its applications, Power factor	
	improvement using DC-DC converters.	
	Need for power decoupling in single phase rectifiers, single phase power decoupling	
	techniques in rectifiers.	
	DC to AC converters and modulation strategies:	
Madula V	Output waveforms of single and Three phase VSI, blanking/dead time requirement,	06
wiodule v	harmonic analysis of load voltage, Current source inverters, comparison of VSI and CSI,	00
	numericals.	
	PWM modulation strategies:	
Module VI	Single phase Sinusoidal PWM (unipolar, bipolar), effect of amplitude and frequency	06
	modulation index, Hysterisis PWM, Three phase SPWM, Space vector modulation.	

- 1. N. Mohan, T. M. Undeland, W.P Robbins, Power Electronics, Converters, Applications & Design, Wiley India Pvt. Ltd.
- 2. M. H. Rashid, Hand book of Power Electronics", Academic Press, 2001.
- 3. Daniel.W.Hart, "Power Electronics", Mc GrawHill Publications 2010.
- 4. Joseph Vithayathil, Power Electronics, Tata McGraw Hill.
- 5. P.S Bhimbra, "Power Electronics", Khanna Publishers.
- 6. Simon Ang, Alejandro Oliva, "Power-Switching Converters" Taylor and Francis group
- 7. R W Erickson and D Maksimovic, Fundamental of Power Electronics Springer, 2nd Edition.

Other References/Journals

- 1. P. T. Krein, Elements of Power Electronics, Oxford University Press.
- 2. L. Umanad, "Power Electronics: Essentials & Applications," Wiley.
- 3. IEEE Transaction journals, IECON, APEC and other power electronic related Conference Proceedings etc.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I								
Subject code	Subject Name	Teaching s (Contact F	Credits Assigned					
	Machine Learning	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
PEDPE1011	Techniques in Power System	3		3		3		

	Subject Name	Examination Scheme								
Subject code		Theory								
		Internal Assessment		End Sem.	Exam Duration	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE1011	Machine Learning Techniques in Power System	20	20	20	80	3	-	_	100	

	To impart knowledge on
Course Objectives	 Understand the motivation for different machine learning algorithms and select the appropriate algorithm for a given problem Use the backpropagation algorithm to calculate weight gradients in a feed forward neural network by hand Write a machine learning algorithm from scratch using Python libraries, and analyse its performance.
	Upon successful completion of this course, the learner will be able to:
Course Outcomes	 To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach. To understand the importance of Decision tree algorithms in machine learning To analyse and implement various machine learning approaches and paradigms using python libraries. Extract features that can be used for a particular machine learning approach in various applications in electrical engineering.

Module	Details	Hrs
Module I	Introduction to machine learning: Impact in daily lives. Brief history of Machin learning. Machine learning techniques: Supervised, Unsupervised, Reinforcement, Neural Network. Train and test methodology, Issues in Machine Learning, Overfitting, Machine learning versus Artificial Intelligence, Ethics in AI, Introduction to Python, Libraries for Machine learning.	04
Module II	Decision Tree: Introduction, Decision tree representation, appropriate problems for decision tree learning, basic decision tree algorithm, hyperspace search in decision tree learning, issues in decision tree learning.	06
Module III	Supervised Learning: Regression, Linear Regression, Multilinear Regression, Logistic Regression, Best fit line, Decision Line, Regression model in Python.	06
Module IV	Clustering & Unsupervised Learning: Learning from unclassified data. Clustering, Hierarchical Agglomerative Clustering. K-means clustering. Expectation maximization (EM) for soft clustering. Semi-supervised learning with EM using labelled and unlabelled data, clustering model in Python.	08
Module V	Artificial Neural Network: Introduction, Feed Forward Neural Networks, basic neural network structure, The Perceptron, forward propagation, cost functions, nonlinear function, Multilayer network.	09

	Back propagation Algorithm and Applications: backpropagation, error, training by					
Madula VI	gradient descent, bias/variance and under/overfitting, regularization, ANN model in					
Module VI	Python, Applications of machine learning in electrical engineering: smart grid,	00				
	renewable energy generation, Forecasting.					

- 1. Introduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Mueller, Sarah Guido, Published by O'Reilly Media, Inc.
- 2. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.
- 3. Neural Network Design, Second Edition, Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, and Orlando De Jesús, 2014.

Reference Books:

- 1. Introduction to Machine Learning, By Ethem Alpaydin
- 2. Neural Networks a Comprehensive Foundations, Simon S Haykin, PHI Edition,

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Subject code	Subject Name	Teaching (Contact	scheme Hours)	Credits Assigned			
PEDPE1012	Power Quality in Power System	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
		3		3		3	

		Examination Scheme								
	Subject Name	Theory								
Subject code		Internal Assessment		End Sem.	Exam T Duration W	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE1012	Power Quality in Power System	20	20	20	80	3	-	-	100	

Course	To impart knowledge on					
	1. To know various power quality issues, it causes and effects					
Objectives	2. To understand effects of harmonics due to non-linear load					
	3. To learn mitigation methods for harmonics					
	Upon successful completion of this course, the learner will be able to					
Course	1. To identify the problems in power system due to harmonics					
Outcomes	2. To suggest solutions to the problems due to power quality					

Module	Contents	Hours				
	Introduction:					
	Sources and Effects of power quality problems, types of power quality disturbances -					
Module I	Voltage sag (or dip), Swell, Transients, short duration voltage variation, long duration	06				
	voltage variation, voltage imbalance, waveform distortion, and voltage flicker.					
	Fundamentals of Harmonics:					
	Harmonic Distortion, Voltage versus Current Distortion, Harmonics versus Transients,					
Module II	Harmonic Sources from Commercial Loads, Harmonic Sources from Industrial Loads,	06				
	Locating Harmonic Sources, System Response Characteristics, Effects of Harmonic					
	Distortion, Inter-harmonics					
	Power Quality Evaluation:					
	IEEE guide lines, Standards and recommended practices, Harmonics mechanism of					
	harmonic generation, harmonic indices (THD, TIF, DIN, C - message weights) Power					
Module III	Quality Costs Evaluation, Harmonic sources, Switching devices, arcing devices,	06				
	saturable devices. Effects of Power System, harmonics on Power System equipment and					
	loads.					
	Power Factor Compensation in linear circuits:					
	Linear circuits with Sinusoidal Supply-Basic relationship, complex power, apparent					
Module IV	power, power factor and power factor compensation	06				
	Linear circuits with non-Sinusoidal Supply-Basic relationship, complex power,					
	apparent power, power factor and power factor compensation.					
	Power Factor Compensation in non-linear circuits:					
	Non-Linear circuits with Sinusoidal Supply-Basic relationship, complex power,					
Module V	apparent power, power factor and power factor compensation.	07				
	Non-Linear circuits with non-Sinusoidal Supply-Basic relationship, complex power,					
	apparent power, power factor and power factor compensation.					

- 1. Roger C. Dugan, Mark F. McGranaghan and H.Wayne Beaty, -Electrical Power System Quality, MC Graw Hill
- 2. G.T. Heydt, Electric Power Quality, Stars in a Circle Publications
- 3. J. Arrillaga, N.R. Watson and S. Chen, Power System Quality Assessment, John Wiley & Sons
- 4. W. Shepherd and P. Zand, Energy flow and power factor in non-sinusoidal circuits, Cambridge University Press
- 5. IEEE-519: 1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems
- 6. Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, Power Quality: Problems and Mitigation Techniques, John Wiley & Sons, First Edition 2015

Reference Book/Journals:

- 1. Jos Arrillaga, B.C. Smith, Neville R Watson and A.R. Wood, Power System Harmonics Analysis, Wiley 1997
- 2. Math H.J. Bollen, Understanding Power Quality Problems, Voltage Sag and Interruptions, Wiley-IEEE Press
- 3. Selected research papers in IEEE Transactions on Power Systems, IEEE Transactions on Power Delivery, and IEEE Transaction on Power Quality

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I								
Subject code	Subject Name	Teaching (Contact	scheme Hours)	Credits Assigned				
PEDPE1013	Electric Vehicle Technology	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
		3		3		3		

Subject code		Examination Scheme								
	Subject Name	Theory								
		Internal Assessment		End Sem.	Exam Duration	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE1013	Electric Vehicle Technology	20	20	20	80	3	-	-	100	

	To impart knowledge on
Course	
Objectives	1. Know the history of electric hybrid electric vehicles (EV & HEV) and emphasize the
	need and importance of EV-HEV for sustainable future.
	2. Introduce the fundamental concepts and principles of electric and hybrid electric
	vehicles drive train topologies.
	3. Develop a thorough understanding of the key elements of EV/HEV: Electric Machines
	for Propulsion Applications and Energy Sources
	4. Model, analyze and design electric and hybrid electric vehicles drive train and to
	understand energy management strategies
	Upon successful completion of this course, the learner will be able to
Course	1. To identify and describe the history and evolvement of electric & hybrid electric vehicles to
Outcomes	emphasize on the need and importance of EV/HEV for sustainable future.
	2. To identify and describe the principles of various EV/HEVs drive train topologies along with
	their power flow control and fuel efficiency estimation.
	3. To design and select electric propulsion system components for EV/HEV drives suitability for
	the desirable performance and control.
	4. To compare and evaluate various energy sources and energy storage components for EV and
	HEV applications.
	5. To model, analyze and design EV/HEV drive train with energy management strategies.
	6. To recognize the need to adapt and engage in operations EV/HEV with the absolute
	technological change in the transportation system for sustainable future.

Module	Contents	Hours
Module I	Introduction: Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance. Historical background of EV/HEV. Current state of the art in EV/HEV technology.	05
Module II	Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drivetrain topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	07

	Electric Drive Trains:			
	Electric Drive-trains: Basic concept of electric traction, introduction to various electric			
	drive-train topologies, power flow control in electric drive-train topologies, fuel			
	efficiency analysis. Electric Propulsion unit: Introduction to electric components used			
Module III	in hybrid and electric vehicles, Configuration and control of DC Motor drives,	08		
	Configuration and control of Induction Motor drives, configuration and control of			
	Permanent Magnet Motor drives, Configuration and control of Switch Reluctance			
	Motor drives, drive system efficiency.			
	Energy Storage:			
	Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric			
	Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage			
	and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based			
Module IV	energy storage and its analysis, Hybridization of different energy storage devices.	08		
	Sizing the drive system: Matching the electric machine and the internal combustion			
	engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the			
	energy storage technology, Communications, supporting subsystems			
	Energy Management Strategies:			
	Energy Management Strategies: Introduction to energy management strategies used in			
Module V	hybrid and electric vehicles, classification of different energy management strategies,	06		
	comparison of different energy management strategies, implementation issues of energy			
	management strategies.			
	Design of EV/HEV:			
Module VI	Design considerations for a Hybrid Electric Vehicle (HEV), Design considerations for	04		
	Battery Electric Vehicle (BEV).			
1				

- 1. C. Mi, M. A. Masrur and D. W. Gao, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, Hybrid Electric Vehicles: Energy Management Strategies, Springer, 2015.
- 4. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, 2004.
- 5. T. Denton, -Electric and Hybrid Vehicles, Routledge, 2016

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I								
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	Credits Assigned				
PEDPE1021	Digital Signal Controller	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
		3		3		3		

		Examination Scheme							
	Subject Name	Theory							
Subject code		Internal Assessment		End Sem.	Exam Duration	Term Work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam	(in Hrs)			
PEDPE1021	Digital Signal Controller	20	20	20	80	3	-	-	100

Course Objectives	 To impart knowledge of digital signal controllers with in depth understanding of various on-chip peripherals To impart knowledge of peripheral interfaces and programming of DSC
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. Illustrate the need for DSC in power and control applications 2. Describe the architectural features and details of DSC 3. Design the DSC analog interface for real world measurements 4. Use the DSC digital interface for power and control applications 5. Compare and recommend the use of on-chip communication for various applications

Module	Details	Hours
Module I	Introduction Review of microprocessor, microcontroller and digital signal processors (DSP) architecture, Fixed and floating-point processors Number formats and operations: Fixed point 16 bit numbers representations of signed integers and fraction, Floating Point Numbers. Review of commonly used DSP processors and their applications, introduction to TMS320C2000 digital signal controller (DSC)	06
Module II	DSC Architecture Overview of TMS320C2000 Digital signal controller family – Features, Architecture, Interrupt and Reset, Memory map - On-chip memories: Flash, RAM, and Boot ROM, Clock system	06
Module III	DSC Programming Code development process, Assembly language programming, Linker, C Compiler, Code Composer Studio (CCS) and online debugging tools	05
Module IV	Analog Interface for DSC Analog to Digital Converter (ADC): operating principal block diagram, modes of operation, configuration of ADC sensing voltage, current and other analog signal, programming for analog interface. Design aspects for real world measurements.	07
Module V	Digital Interface for DSC: Block diagram, operation and configuration details of-Digital I/O -CPU Timers –Pulse Width Modulator (PWM), High Resolution PWM, Capture Module, Quadrature Encoder Pulse (QEP); use of these peripherals for real time power and control applications	08

	DSC Communication Interface and Protocols:	
Module VI	On chip communication interface, configuration and use- Controller Area Network,	07
	SPI/SCI, I2C. Physical layer interface, programming for data transfer.	

Reference Books:

- 1. Digital Signal Processing in Power Electronics Control Circuits by Krzysztof Sozanski, Springer
- 2. Digital Signal Processing in Power System Protection and Control by Waldemar Rebizant, Janusz Szafran, and Andrzej Wiszniewski, Springer.
- 3. Digital Power Electronics and Applications by *Fang Lin Luo, Hong Ye and Muhammad Rashid*, Elsevier Academic Press.
- 4. Digital Signal Processing in Power Electronics Control Circuits by Krzysztof Sozanski, Springer
- 5. DSP Based Electromechanical Motion Control by Hamid Toliyat and Steven Campbell, CRC Press

Web References:

- 1. https://training.ti.com/c2000-f2837xd-microcontroller-one-day-workshop-series
- 2. https://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/c28x28379/F2837xD_Microcontroller_M
- 3. https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/c2000-real-time-control-mcus/overview.html
- 4. The Essential Guide for Developing with C2000[™]RealTime Microcontrollers: Texas Instruments

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	(Credits Assigned		
PEDPE1022	Microgrid	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
	Technology	3		3		3	

		Examination Scheme											
				Theor	·у				Total				
Subject code	Subject Name	A	Internal ssessmen	t	End Sem. Exam	Exam Duration (in Hrs)	Term Work	Pract/ Oral					
		Test 1	Test 2	Avg									
PEDPE1022	Microgrid Technology	20	20	20	80	3	-	-	100				

	1. To introduce the fundamental concept, various power architectures and control of distributed
Course Objectives	generation and microgrids.
	2. To review various regulatory standards and state of the art of microgrids
	3. To understand the microgrid and Smart Grid deployments for large scale integration of clean
	energy sources, various technologies, automation and ICT infrastructure requirements.
	Upon successful completion of this course, the learner will be able to:
	1. To identify and describe the impact of renewable energy integration for mitigating energy
	crises and sustainable future.
Course Outcomes	2. To identify and describe the concept of Microgrid and its various topologies, modes of operation control and communication architecture.
	3. To identify and describe the concept of Smart Grid, its features and the state of the art.
	4. To understand various Smart Grid technologies, automation, resiliency and its adoption in
	current power system.

Module	Details	Hours
Module I	Introduction: Present Energy Scenario, Review of various renewable technologies: Impact of grid integration of renewable energy resources on existing power system, Energy storage system and their role in enhancement of performance.	02
Module II	Introduction to Microgrid: Concept of distributed generation, regulatory standard IEE 1547, DG installation classes, requirement for grid interconnection, security issue in DG, implementation and limitation, islanding issue; Concept of microgrid, review of sources of microgrids, typical structure and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids, modes of operation and control of microgrid: grid connected and islanded mode, Active and reactive power control, protection issues, anti-islanding schemes.	12
Module III	Introduction to Smart Grid: Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient & Self- Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid. CDM opportunities in Smart Grid	06

Module IV	Smart Grid Technologies: Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation	04
Module V	Smart Grid Operations and Automation: Smart Substations, Substation Automation, Feeder Automation. Geographic Information System (GIS), Intelligent Electronic Devices (IED) & their application for monitoring & protection, Wide Area Measurement System (WAMS), Phasor Measurement Unit (PMU)	06
Module VI	Communication Technology for Microgrids & Smart Grid: Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid.	06

Reference Books:

- 1. A. Yezdani, and Reza Iravani, Voltage Source Converters in Power Systems: Modeling, Control and Applications, John Wiley Publications, 2010
- 2. Dorin Neacsu, Power Switching Converters: Medium and High Power, CRC Press, 2006
- 3. A. Keyhani, M. N. Marwali, M. Dai, Integration of Green and Renewable Energy in Electric Power Systems, Wiley, 2009
- 4. B. M. Buchholz and Z. Styczynski, Smart Grids Fundamentals and Technologies in Electricity Networks, Springer, 2014
- 5. C. W. Gellings, The Smart Grid: Enabling Energy Efficiency and Demand Response, CRC Press, 2009
- J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, A. Yokoyama, *Smart Grid: Technology and Applications*, Wiley, 2012
 J. C. Sabonnadière and N. Hadjsaïd, *Smart Grids*, John Wiley & Sons and ISTE, 2012
- 8. IEEE standards —IEEE-1547-2003: IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems IEEE standards 2003
- 9. IEEE standards —IEEE 1547-4-2011: IEEE Guide for Design Operation & Integration of Distributed Resources Island System with Electric Power System,
- 10. Consortium for Electric Reliability Technology Solutions (CERTS) white paper on Integration of Distributed Energy Resources: _The CERTS Microgrid Concept' 2002

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I								
Subject code	Subject Name	Teaching s (Contact I	scheme Hours)	Credits Assigned				
PEDPE1023	IoT Application in	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
	Electrical Engineering	3		3		3		

		Examination Scheme										
			Theory									
Subject code	Subject Name	A	Internal ssessmen	t	End Sem.	Exam Duration	Term	Pract/ Oral	Tota l			
		Test 1	Test 2	Avg	Exam	(in Hrs)						
PEDPE1023	IoT Application in Electrical Engineering	20	20	20	80	3	-	-	100			

Course Objectives	1. To learn the concepts of IOT.					
	2. To identify the different IoT technology.					
	3. To learn different protocols used in IOT.					
	4. To learn how to analyse the data in IOT.					
	5. To learn different applications in IOT					
	Upon successful completion of this course, the learner will be able to:					
	1. Apply the concepts of IOT.					
Course	2. Identify the different technology.					
Outcomes	3. Analysis and evaluate protocols used in IOT					
	4. Analysis and evaluate the data received through sensors in IOT.					
	5. Apply IOT to different applications.					

Module	Details	Hours
Module I	Introduction to Internet of Things: Definition and characteristics of IoT, Physical design of IoT- Things in IoT, IoT protocol, Logical design of IoT – IoT functional blocks, IoT Communication Models, IoT communication APIs.	04
Module II	Various Technologies for Implementations of IOT: Defining Specifications About - Purpose & requirements, process, domain model, information model, service, IoT level, Functional view, Operational view, Device and Component Integration, Application Development, Case Study	06
Module III	Communication Technologies: Introduction to Communication Technologies 802.15.4, ZigBee, BLE, WiFi, LORA, GSM basic protocol, topologies, data rate, range, power, computations/bandwidth, QoS	06
Module IV	Communication Model and Protocols: Communication Model and Protocols M2M vs IOT, Resource Management, Registration, Discovery Data Exchange Formats – XML & JSON, MQTT Protocol, RESTFul Architecture, HTTP REST Model, CoAP Protocol, Anti collisa protocol	08
Module V	RFID Technology: Introduction, principle of RFID, components of RFID system: RFID tag, Reader, RFID middleware, issues, RFID, transponder, RFID architecture,	09
Module VI	IOT Application:	06

Case Studies of IOT Home (Smart Lighting and Intrusion detection)	, Cities (Smart
Parking, Garbage collection), Environment (Pollution detection, Forest l	Fire Detection),
Power (Smart Grid), Retail (Inventory Management), Health (Monitoring	g and detection)

- 1. Francis DaCosta, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1st Edition, Apress Publications, 2013
- 2. Wimer Hazenberg, Menno Huisman and Sara Cordoba Rubino, Meta Products: Building the Internet of Things, BIS publishers.
- 3. Internet of Things connecting objects to the web, by Hakima Chaouchi, Wiley.
- 4. Internet of Things (A Hands-on-Approach) by Arshdeep Bhaga and Vijay Madisetti.

Reference Books:

- 1. The Internet of Things (MIT Press) by Samuel Greengard.
- 2. The Internet of Things (Connecting objects to the web) by Hakima Chaouchi (Wiley Publications).
- 3. RFID and the Internet of Things, by Herve chabanne, Wiley

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Course Code	Course Name	Teaching (Contact	scheme Hours)		Credits Assign	ned	
PEDIE1011	Reliability	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
	Engineering	3		3		3	

		Examination Scheme								
			Theory							
Course code	Course Name	Internal Assessment			End	Exam	Term	Oral	Total	
		Test 1	Test 2	Avg	Sem. I Exam (Duration (in Hrs)	Work			
PEDIE1011	Reliability Engineering	20	20	20	80	3			100	

Course	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex
	systems 4. To understand the various aspects of Maintainability, Availability and FMEA procedure
	Upon successful completion of this course, the learner will be able to:
	1. Understand and apply the concept of Probability to engineering problems
Course	2. Apply various reliability concepts to calculate different reliability parameters
Outcomes	3 . Estimate the system reliability of simple and complex systems
	4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hours
1	 Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis. 	08
2	 Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis. 	08
3	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
4	Reliability Improvement:Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies.Markov analysis.System Reliability Analysis – Enumeration method, Cut-set method, Success Path method,Decomposition method.	08

5	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

	M.Tech in Electrical Engineering (Power Electronics and Drives)- Sem-I						
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned			
PEDIE1012	Cyber Security and Laws	Theory	Pract./Tut.	Theor y	Pract./Tut.	Total	
		3		3		3	

		Examination Scheme									
Course code	Course Name	Internal Assessment			End	Exam	Term	Oral	Total		
		Test 1	Test 2	Avg	Sem. Exam	Duration (in Hrs)	Work				
PEDIE1012	Cyber Security and Laws	20	20	20	80	3			100		

Course Objectives	 To understand and identify different types cybercrime and cyber law To recognized Indian IT Act 2008 and its latest amendments To learn various types of security standards compliances
Course	Upon successful completion of this course, the learner will be able to:
Outcomes	 Understand the concept of cybercrime and its effect on outside world Interpret and apply IT law in various legal issues Distinguish different expects of each or law.
	 Distinguish different aspects of cyber law Apply Information Security Standards compliance during software design and development

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
4	The Concept of Cyberspace:E-Commerce, The Contract Aspects in Cyber Law ,The Security Aspect of Cyber Law,TheIntellectual Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law , TheCriminal Aspect in Cyber Law, Global Trends in Cyber Law , Legal Framework forElectronic Data Interchange Law Relating to Electronic Banking , The Need for an IndianCyber Law	8

5	Indian IT Act: Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
6	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information Technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes by Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on: The Information Technology ACT, 2008-TIFR:https://www.tifrh.res.in
- Website for more information: A Compliance Primer for IT professional: https://www.sans.org/reading-room/whitepapers/compliance/complianceprimerprofessionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M.Tech in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned			
PEDIE1013	Energy Audit and	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
	Management 3			3		3	

	Course Name	Examination Scheme								
		Theory								
Course code		Internal Assessment			End	Exam	Term	Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam	Duration (in Hrs)	Work			
PEDIE1013	Energy Audit and Management	20	20	20	80	3		-	100	

Course Objectives	 To understand the importance energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. To identify and describe present state of energy security and its importance. 2. To identify and describe the basic principles and methodologies adopted in energy audit of a utility. 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities. 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, EnergyConservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
2	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
3	 Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. 	10

	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
4	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steamdistribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
5	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
6	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy ResearchInstitute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M.Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned			
PEDIE1014	Operations T Research	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
		3		3		3	

	Subject Name	Examination Scheme							
Subject code		Internal Assessment		End Sem.	Exam Duration	Term Work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam	(in Hrs)			
PEDPE1014	Operations Research	20	20	20	80	3	-	-	100

Course Objectives	 Formulate a real-world problem as a mathematical programming model. Understand the mathematical tools that are needed to solve optimization problems. Use mathematical software to solve the proposed models.
Course Outcomes	 Upon successful completion of this course, the learner will be able to: Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximumflow problems. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Contents	Hours
1	 Introduction to Operations Research: Introduction, Structure of the Mathematical Model, Limitations of Operations Research Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, Duality, Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem, Travelling Salesman Problem Integer Programming Problem: Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms. 	14

2	Queuing models : queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	05
3	Simulation : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
4	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
5	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
6	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model	05

REFERENCES:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", JohnWilley and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill,2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Subject code	Subject Name	Teaching s (Contact H	cheme Iours)	Credits Assigned			
PEDL101	Drives and Control	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
TEDEIUI	Laboratory		2		1	1	

	Subject Name		Examination Scheme							
			Theory							
Subject code		Internal Assessment		End Sem.	Exam Duration	Term Work	Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDL101	Drives and Control Laboratory						25	25	50	

Course	To impart knowledge on electrical drives and control
Objectives	
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. Simulate drives and control applications. 2. Analyze the simulation results. 3. Identify the implementation methods of drives 4. Interface PLC with Drives for Automation

List of suggested experiments:

- 1. Develop the model of DC Motor and analyze the performance (Simulation)
- 2. Develop the model of three phase Induction Motor and analyze the performance (Simulation)
- 3. Simulation of Half Controlled and Fully Controlled Converter fed DC Drives.
- 4. Four Quadrant Chopper fed DC Motor.
- 5. Simulation of PWM Inverter fed Three Phase Induction Motor Control: Compare stator voltage control and V/f control for a constant torque load.
- 6. Open loop V/f control of Three Phase Induction Motor.
- 7. Closed loop V/f control of Three Phase Induction Motor.
- 8. Vector Control of Three Phase Induction Motor.
- 9. Simulation of Sensorless Control of Three Phase Induction Motor.
- 10. Speed Control of BLDC Motor.
- 11. Speed Control of Permanent Magnet Synchronous Motor.
- 12. Electrical Braking of AC/DC Motor.
- 13. PLC with AC Drive for Automation Control using digital / analog / Fieldbus Communication
- 14. PLC with AC Servo Drive for Position Control.

Reference Books:-

- 1. Analysis of Electric Machinery P.C. Krause, McGraw Hill, New York
- 2. Power Semiconductor Controlled Drives, G. K. Dubey, Prentice-Hall International.
- 3. D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, 1996.
- 4. Power Electronics by Muhammad H. Rashid, Pearson
- 5. Control of Electrical drives, W. Leonhard, Springer-Verlag.
- 6. John Chiasson, Modelling and High Performance Control of Electric Machines, Wiley- IEEE Press, 2005.
- 7. I. Boldea, S. A. Nasar, Vector Control of AC Drives, CRC Press, 1992.

Term work:

Term work shall consist of **minimum eight experiments**.

Experiments Performance	: 10 marks
Journal	: 10 marks
Attendance	: 05 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire lab work

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-I							
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	Credits Assigned			
PEDSRI 101	Power Electronics System Design	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
TEDSDEIVI	Laboratory		4		2	2	

Subject code	Subject Name	Examination Scheme								
			Theory							
		Internal Assessment		End Sem.	End Exam em. Duration	Term Work	Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDSBL101	Power Electronics System Design Laboratory						50	50	100	

Course	To impart knowledge on
Objectives	1. Various auxiliary circuits required for power electronic converters
U	2. Hardware implementation aspects of converters
	Upon successful completion of this course, the learner will be able to:
Course Outcomes	 Design and implement auxiliary circuits of power electronic converters Design and implement power electronic converters Use controllers for power converter control

List of suggested experiments:

- 1. Design of Gate driver circuits for Si devices like Power MOSFETS or IGBTs and its PCB fabrication.
- 2. Design of Gate driver circuits for Wide band gap devices like SiC or GaN and its PCB fabrication.
- 3. Design and Implementation of Snubber circuit and Heat sink
- 4. Design of transformer for isolated converter (flyback / full bridge / push pull / forward)
- 5. Design of PWM Controller IC based Closed loop controlled DC-DC Converter
- 6. Design of microcontroller based Closed loop controlled DC-DC Converter
- 7. Design and Implementation of a power electronic converter for drive application (BLDC motor/ any other motor)
- 8. Design of voltage or current controlled power electronic converter
- 9. Design of V/F controlled inverter for Induction motor

Any other design exercise based on Power converters and their applications in various domains

References:

- 1. Mohan Ned et al., "Power Electronics Converters, Applications and Design", Wiley India Pvt. Ltd., New Delhi.
- 2. L. Umanand, Bhatt, "Design of Magnetic Components for Switched Mode Power Converters", John Wiley & Sons
- 3. NPTEL course on "Design of Power Electronic Converters", Prof. Shabari Nath, IIT Guwahati.
- 4. NPTEL course on "Advanced Power Electronics and Control", Prof. Avik Bhattacharya, IIT Roorkee.

Term work:

Term work shall consist of **minimum three experiments**.

Experiments Performance		: 10 marks
Attendance		: 05 marks
Journal		: 10 marks
	C (1	

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire lab work

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II								
Subject code	Subject Name	Teaching (Contact	scheme Hours)	(Credits Assigned			
PEDC201	Advanced Power Electronics	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
		3		3		3		

		Examination Scheme								
	Subject Name	Theory								
Subject code		Internal Assessment			End Sem.	Exam Duration	Term Work	Pract/ Oral	Tota l	
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDC201	Advanced Power Electronics	20	20	20	80	3	-	-	100	

	To impart knowledge on
	1. Dc to dc conversion with isolation, the underlying principles of converter operation and hence
Course	to analyze different converter circuits for power conversion.
Objectives	2. Design of magnetics such as high frequency transformers and inductors.
o »jeen, es	3. Modeling of converter and design the controller for deeper understanding and detailed analysis.
	4. Latest technologies and research going on in different areas related to power electronics.
	Upon successful completion of this course, the learner will be able to
	1. Select and design magnetics and power electronic converters for a broad range of energy
	conversion applications.
Course	2. Model and design controllers for the closed loop operation of power converters.
Outcomes	3. Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC
	drives, power generation and transmission and energy conversion, industrial applications,
	extraction of energy from renewable sources.
	4. Deliver technological solution in the field of power electronics.

Module		
Module I	Isolated dc to dc converters Advantages of switching power supplies, unidirectional and bidirectional core excitation, fly back, forward, push-pull and bridge converters, Selection of converters for various applications, numericals.	08
Module II	Design of DC-DC converters: Selection of diode, controllable devices and capacitor of Buck, Boost, Buck-Boost converters and Flyback converters for various applications. Design of Magnetics: Area product approach, design of high frequency inductor, design of high frequency transformer, numericals (No derivation in qu paper).	05
Module III	Control Methods PWM duty ratio control, Voltage feed forward PWM control, current mode control, slope compensation, comparison of current mode and voltage mode control.	04
Module IV	Modelling and Compensator design State space model of various ideal and non-ideal Buck, Boost and Buck-Boost and Flyback dc to dc converters, state space averaging techniques, small signal analysis, transfer function, feedback control, compensator design, State space model of VSI and compensator design.	10
Module V	Multi-Level Inverter: Need for multilevel inverters, Diode clamped, flying capacitor and cascaded MLI, Phase shifted and level shifted PWM techniques, Applications of multilevel inverters.	05

	Applications of power electronic converters	
M	Comparison of hard switching and soft switching, ZVS & ZCS resonant converters in high	04
Module VI	frequency applications, Converters for extracting power from renewable sources like solar	04
	and wind, Converters for Uninterrupted power supplies.	

Text Books:

- 1. N. Mohan, T. M. Undeland, W.P Robbins, —Power Electronics, Converters, Applications & Design, Wiley India Pvt. Ltd.
- 2. M. H. Rashid, —Hand book of Power Electronics", Academic Press, 2001.
- 3. Daniel Hart, "Power Electronics", McGraw Hill Publications 2010.
- 4. Joseph Vithayathil, —Power Electronics, Tata McGraw Hill.
- 5. P.S Bhimbra, "Power Electronics", Khanna Publishers.
- 6. Simon Ang, Alejandro Oliva, "Power-Switching Converters" Taylor and Francis group
- 7. R W Erickson and D Maksimovic, Fundamental of Power Electronics Springer, 2nd Edition.

Other References/Journals

- 1. P. T. Krein, Elements of Power Electronics, Oxford University Press.
- 2. L. Umanad, Power Electronics: Essentials & Applications, Wiley.
- 3. IEEE Transaction journals, IECON, APEC and other power electronic related Conference Proceedings etc.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II								
Subject code	Subject Name	Teaching s (Contact H	Credits Assigned					
PEDC202	Digital Control of Electrical Drives	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
		3		3		3		

	Subject Name	Examination Scheme							
			Theory						
Subject code		Internal Assessment		End Sem. Exam	Exam Duration (in Hrs)	Term Work	Pract/ Oral	Total	
		Test 1	Test 2	Avg					
PEDC202	Digital Control of Electrical Drives	20	20	20	80	3			100

Course Objectives	To impart knowledge on digital control of electrical drive
Course Outcomes	 Upon successful completion of this course, the learner will be able to: Design digital control scheme of DC-DC Converter Design digital scalar control scheme of three phase induction motor Design digital vector control scheme of three phase induction motor Design digital control scheme of BLDC Motor

Module	Details	Hours
Module I	Modelling and Analysis of Electrical Drive Components: Block diagram of DC drive, State space model of DC-DC converter (Buck/Boost), Small signal analysis of DC-DC converters. Modelling of DC Motors (Shunt motor). Block diagram of AC drive. Commonly used reference frames (d-q Stationary reference frame and synchronously rotating reference frame. State space Model of AC Motor (Induction motor), Large Signal Modelling of Inverter. Digital Data Acquisition system, Voltage Sensors, Current Sensors, Frequency Sensors and Speed Sensors.	07
Module II	Digital control design: Practical Aspects of the Choice of Sampling Rate, Principles of Discretization, Digital controller with Bilinear Transformation, Inverse Z Transform to Derive Discrete Domain Equations, Frequency Response and Warping, Digital PID controller. Digital filter implementation. Anti-Wind Up Loop Implementation, ADC Delay Consideration. Selection of DSP according to the Requirement.	06
Module III	Digital Control of DC-DC Converter: Open Loop Control of Buck/Boost Converter, Selection of Power switches. Current, Voltage and Dual Loop Closed Loop Digital Control of DC-DC Converter, Digital Control Loop Sampling Scheme, DC-DC Controller Design, Digital implementation of complete system.	06
Module IV	Speed Controller: Basic Structure of the Speed-Controlled System, Open-loop and closed-loop Transfer Functions, Load Rejection of the Proportional Speed Controller, Proportional Speed Controller with Variable Reference, Proportional Speed Controller with Frictional Load, The Speed Controller with Proportional and Integral action, Transfer Functions of the system with a PI controller, Load Rejection with the PI Speed Controller,	06

_					
		Parameter Setting and the closed-loop Bandwidth, Discrete-time Implementation of			
		Speed Controllers, Analysis of the System with a PI Discrete-time Speed Controller,			
		High-frequency Disturbances and the Sampling Process.			
		Digital control of three phase Induction motor:			
		Open loop Speed Control Implementation of Induction Motor using Sine PWM and			
		Space Vector PWM controller or Third Harmonic Insertion technique, Speed			
	Module V	Estimation Algorithm Using Encoder Signal, Closed Loop Scalar Control	08		
		Implementation, Flux Estimation Algorithm, Indirect Vector Control Algorithm, Sine			
		And Cosine Resolver for Direct Vector Control, Direct Vector Control Algorithm,			
		Direct Torque Control Algorithm Implementation.			
		Digital Control of BLDC Motor, PMSM and Switched Reluctance Motor:			
		Hall based Sensors, Look up Table Formation based on Hall Sensors Output, DSP			
	M	Implementation: Speed and Torque Control using Voltage and Current Control	07		
	Module VI	Algorithms, Sensorless Control of BLDC Motor Drive, V/f Control of PMSM Motor,	06		
		Vector control of PMSM Motor, Current Control of SRM with the help of Position			
		Sensors, Digital ICs used for different types of motor control			

- 1. Digital Control of Electrical Drives (Power Electronics and Power Systems) by Slobodan N. Vukosavic, Springer.
- 2. M. B. Patil, M. C. Chandorkar, V. Ramanarayanan, V. T. Ranganathan, Simulation of Power Electronic Circuits. Narosa Series in Power and Energy System, 2009.
- 3. Modern Power Electronics and AC Drives by B. K. Bose, Prentice Hall PTR
- 4. Advanced Electric Drives: Analysis, Control, and Modeling Using MATLAB / Simulink, Ned Mohan, Wiley, 2014.

References:-

- 1. Industrial Motion Control: Motor Selection, Drives, Controller Tuning, Applications, Hakan Gurocak, Wiley, 2016.
- 2. Electric Motor Drives: Modeling, Analysis and Control by Krishnan.R, PHI.
- 3. From Continuous-Times Domain to Microcontroller Code By Jonathan Dodge, P.E.
- 4. Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply by Texas Instruments
- 5. Sensorless Field Oriented Control of 3-Phase Induction Motors Using F2833x by TI
- 6. Scalar (V/f) Control of 3-Phase Induction Motors by TI
- 7. BLDC Motor Control with Hall Sensors based on FRDM-KE02Z.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II									
Subject code	Subject Name	Teaching s (Contact I	scheme Hours)	Credits Assigned					
PEDPE2011	E2011 Power Electronics in Power System	Theory	Pract./Tut.	Theory	Pract./Tut.	Total			
1201122011		3		3		3			

		Examination Scheme								
	Subject Name		Theory							
Subject code		Internal Assessment		End Sem.	Exam Duration	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE2011	Power Electronics in	20	20	20	80	3			100	
	Power System									

Course Objectives	 To know the basic principle of conventional active and reactive power flow control in power systems and problems associated with long distance power transmission. To make students aware how power electronics devices can be used to find solution to the problems in long distance power transmission
Course Outcomes	 Upon successful completion of this course, the learner will be able to: Students should be able to select and implement proper compensator to solve the problems occurring in long distance power transmission

Module	Details	Hours						
Module I	Introduction:Steady state and dynamic problems in AC systems- Transmission interconnections-IFlow of power in an AC system- Loading capability- Power flow and dynamicstability considerations of a transmission interconnection. Relative importance ofcontrollable parameters. Basic types of FACTS controllers.							
Module II	Ile II Static shunt compensators: Objectives of shunt compensation, Methods of controllable Var generation. Variable impedance type static Var generators (TCR, TSR, TSC,FC-TCR), Switching converter type Var generators.							
Module III	Static series compensation: Objectives of series compensation- Variable impedance type series compensation- TSSC and TCSC. Switching converter type series compensators – SSSC.	06						
Module IV	Static voltage and phase angle regulators: Objectives of voltage and phase angle regulators, Approaches to TCVR and TCPAR, switching converter based voltage and phase angle regulators.	06						
Module V	Load Compensation: Objectives of load compensation. Compensating single phase loads using DSTATCOM, Ideal three phase shunt compensator structure, Series compensation of power distribution system using DVR.	06						
Module VI	Unified Power Flow Controller (UPFC): Basic operating principle, Conventional transmission control capabilities	05						

Text Books:

- 1. Hingorani N.G. & Gyugi L., Understanding FACTS :Concepts and Technology of Flexible AC Transmission Systems, Wiley-IEEE Press
- 2. Timothy J. E. Miller, Reactive power control in Electric Systems, Wiley India Edition.

Reference Books:

- 1. Yong Hua Song -Flexible AC Transmission System, Institution of Electrical Engineers, London
- 2. Arindam Ghosh and Gerard Ledwich, Power Quality Enhancement Using Custom Power Devices, Kluwer Academic Publishers

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules.

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II									
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	Credits Assigned					
PFDPF2012	Industrial Load Modelling and	Theory	Pract./Tut.	Theory	Pract./Tut.	Total			
	Control	3		3		3			

		Examination Scheme									
	Subject Name			Theor	Term Work	Pract/ Oral	Total				
Subject code		Internal Assessment		End Sem.				End Exam Sem. Duration			
		Test 1	Test 2	Avg	Exam	(in Hrs)					
PEDPE2012	Industrial Load Modelling and Control	20	20	20	80	3	-	-	100		

	1. To understand the energy demand scenario
	2. To understand the modelling of load and its ease to study load demand industrially
Course	3. To know Electricity pricing models
Objectives	4. 4. Study Reactive power management in Industries
	Upon successful completion of this course, the learner will be able to:
Course Outcomes	 Understand the role of Industrial load Management in present electrical energy scenario Understand different load control techniques in industries and its application. Understand reactive power management and its controls. Understand various cooling and heating loads its control strategies Understand captive power management and its control strategies Understand and apply different optimal operation strategies to reduce demand of electricity during peak time.

Module	Details	Hours
Module I	Introduction: Electric Energy Scenario-Demand Side Management-Industrial Load Management. Load Curves-Load Shaping Objectives-Methodologies. Barriers; Classification of Industrial Loads- Continuous and Batch processes -Load Modelling, Electricity pricing – Dynamic and spot pricing –Models.	08
Module II	Load Control Methods: Direct load control- Interruptible load control. Bottom up approach- scheduling- Formulation of load models- Optimization and control algorithms - Case studies.	07
Module III	Reactive Power Management Reactive power management in industries-controls-power quality impacts application of filters Energy saving in industries.	06
Module IV	Cooling and Heating Loads: Load profiling- Modelling. Cold storage-Types- Control strategies. Optimal operation- Problem formulation- Case studies.	06
Module V	Captive Power Management: Captive power units- Operating and control strategies- Power Pooling- Operation models. Energy banking-Industrial Cogeneration	06

	Optimal Operation Strategies:	
Module VI	Selection of Schemes Optimal Operating Strategies. Peak load shaving-Constraints-	06
	Problem formulation- Case study. Integrated Load management for Industries	

- 1. C.O. Bjork "Industrial Load Management Theory, Practice and Simulations", Elsevier, the Netherlands, 1989.
- 2. C.W. Gellings and S.N. Talukdar, "Load management concepts," IEEE Press, New York, 1986, pp. 3-28.
- 3. Y. Manichaikul and F.C. Schweppe," Physically based Industrial load", IEEE Trans. on PAS, April 1981.
- 4. H. G. Stoll, "Least cost Electricity Utility Planning", Wiley Interscience Publication, USA, 1989.
- 5. I. J. Nagarath and D. P. Kothari, Modern Power System Engineering., Tata McGraw Hill publishers, New Delhi, 1995.
- 6. IEEE Bronze Book- "Recommended Practice for Energy Conservation and cost effective planning in Industrial facilities", IEEE Inc, USA.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II									
Subject code	Subject Name	Teaching (Contac	g scheme t Hours)	Credits Assigned					
PEDPE2013	DSP Applications in Power Conversion	Theory	Pract./Tut.	Theory	Pract./Tut.	Total			
1 2013	Systems	3		3		3			

		Examination Scheme								
	Subject Name			Theor	у					
Subject code		Internal Assessment		End Sem.	End Exam Sem Duration	Term Work	Pract/ Oral	Tota 1		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE2013	DSP Applications in Power Conversion Systems	20	20	20	80	3	-	-	100	

Course Objectives	To impart knowledge on1. Real time applications using DSP processors2. Interfacing of DSP with various power converters3. Programming DSP for Power and control applications
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. Use mathematical tools for DSP applications in real time power and control applications 2. Program the DSP for various building blocks of real time power and control applications 3. Design and implement DSP based control of power Electronic converters 4. Model and analyze the closed loop power Electronic system 5. Illustrate the use of DSP in various industrial applications

Module	Details	Hours
Module I	Introduction: DSP/DSC for real time power and control applications, requirements, analog and digital interfaces. Review of mathematical tools for DSP applications: numerical integration: Euler's implicit and explicit method, Heun's Method, Trapezoidal Method; Implementation of digital filters and transformations, PLL, Harmonic oscillator, Harmonic extraction.	08
Module II	DSP based DC-DC Converter Control: Buck converter, Boost converter and Bidirectional Converter: closed loop control implementation: hardware and control program for current, voltage and power control. Control implementation with PI, Type II and Type III controller	08
Module III	DSP based DC-AC Converter Control: Standalone and Grid tied inverter (single and three phase) : closed loop control implementation: hardware and control program for current, voltage and power control.	08
Module IV	DSP based AC-DC Converter Control: Active Front End (AFE) converter : closed loop control implementation: hardware and control programing	07
Module V	DSP based multi-converter system: Multi-stage converter system control with DSP, requirement of analog / digital and communication interfaces	04
Module VI	DSP applications in Industrial Domains: Overview of DSP applications in Traction converters, Electric Vehicles, UPS systems	04

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II								
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	(Credits Assign	ed		
PEDPE2021	Design of Electric Vehicles	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
	Systems	3		3		3		

	Subject Name	Examination Scheme								
				Theor						
Subject code		Internal Assessment			End Sem.	Exam Duration	Term Work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE2021	Design of Electric Vehicles Systems	20	20	20	80	3	-	-	100	

Course	1. To illustrate the design philosophies used in the EV domain.
Objectives	2. To explore the selection of power and control architecture of EV drives
	3. To study the design aspects of EV battery packs and other auxiliary systems
	Upon successful completion of this course, the learner will be able:
	1. To select and size the electric motor for a particular EV application and performance criteria
	2. To select and size the battery pack to meet desired EV performance and
Course	3. To design the EV drive system with functional safety considerations.
Outcomes	4. To illustrate the use of hybrid energy source for EV performance improvement
	5. To illustrate the design aspects of Automotive Subsystem
	6. To design the EV chargers and charging infrastructure

Module	Details	Hours
Module I	Selection/ Sizing of EV Electric Motors: Electric Vehicle modelling, Tractive force calculations, Design considerations for 2W, 3W and 4W EVs; Torque, power and Speed requirement, Traction Limit, Maximum Acceleration Limit, Maximum Grade Limit, Vehicle Power Demand Vehicle Performance Envelope, and Vehicle Power Envelope; Vehicle Power Demand during Driving Cycles. Design considerations for EV motors and their cooling system. Application Examples of EV/HEV motors with vehicles and motor specifications.	08
Module II	 <u>Selection/ Sizing of Battery pack and other Energy Resource:</u> Selection of type of Battery pack for 2W, 3W and 4W EVs; Battery pack sizing: Design considerations: Range per charge, range anxiety, EV motor power requirement; Impact of road conditions, environmental conditions and traffic conditions. High-Voltage Cabling and Disconnects, Safety in Battery Design, Testing for safety. Accelerated Reliability Testing of Electric Vehicles, Battery Cycle Life versus Peak Power and Rest Period. Selection and sizing of Fuel cell for FCEV, design considerations; Battery-ultra-capacitor hybrid combination sizing, performance analysis. Design considerations for Ultra-capacitor based EV, requirement of charging infra. Flywheel selection and sizing for EV/HEV applications. 	12
Module III	Automotive Subsystem Design:	06

	Electronic Control Unit (ECU) and its Control Features, Communications between ECUs,	
	Control Software Development: Software-in-the-Loop (SIL) Simulation and Hardware-	
	in-the-Loop (HIL) Simulation.	
	Acceleration and braking control, regenerative braking; Automotive Steering Systems.	
	Design considerations of HVAC controller	
	EV System integration:	
Module IV	EMC design on ECU level, EMC design on system level and in special subsystems,	06
	Radiated emissions and Conducted emissions, EMI EMC measurements.	
	Design of Charging Infrastructure:	
	Design considerations for AC charger: vehicle interface and charging protocol design.	
	applicable charging standards	
Madula V	Design of On-Board Charger (OBC)-Schematic, power topology and control, Power	10
wodule v	capacities, regenerative braking control.	12
	Design considerations of DC fast charger: vehicle interface and charging protocol design.	
	Connectivity and applicable charging standards	
	Installation guidelines and grid requirement for charger installations.	
	Design with Functional Safety of Automotive Electronics:	
	Functional Safety requirements of Automotive Electronics; ASIL identification and safety	
	goal finalization, ISO 26262.	
Madula VI	Energy Storage integrity / protection: rupture and toxic gas management; low energy	00
Module VI	stranding, Unintended vehicle movement, shock protection, and Elimination of potential	08
	thermal/ explosive event.	
	Hazard and Risk Analysis (HARA) for different situations, Testing of vehicles for	
	compliance of safety norms	

Text/Reference Books:-

- 1. Design and Control of Automotive Propulsion Systems by Zongxuan Sun and Guoming Zhu, CRC Press, 2015
- 2. Electric Vehicle Machines and Drives Design, Analysis and Application by K. T. Chau, IEEE Press, and Wiley, 2015
- 3. EMC and Functional Safety of Automotive Electronics by Kai Borgeest, IET, 2018

Website Reference / Video Courses:

- 1. **NPTEL Web Course:** Electric Vehicles Part 1 by PROF. AMIT KUMAR JAIN Department of Electrical Engineering IIT Delhi; https://nptel.ac.in/courses/108/102/108102121/
- 2. NPTEL Web Course: Fundamentals of Electric vehicles: Technology & Economics, by Prof. Ashok Jhunjhunwala, Prof. Prabhjot Kaur, Prof. Kaushal Kumar Jha and Prof. L Kannan, IIT Madras, https://nptel.ac.in/courses/108/106/108106170/
- 3. **NPTEL Web Course:** Introduction to Hybrid and Electric Vehicles by Dr. Praveen Kumar and Prof. S. Majhi, IIT Guwahati, https://nptel.ac.in/courses/108/103/108103009/

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II								
Subject code	Subject Name	Teaching s (Contact l	scheme Hours)	C	redits Assigne	d		
PEDPE2022	Design of Power Converters	Theory	Pract./Tut.	Theory	Pract./Tut.	Total		
1 EDI E2022		3		3		3		

	Subject Name	Examination Scheme								
Subject code		Internal Assessment		End Sem.	End Exam em. Duration	Term Work	Pract/ Oral	Tota l		
		Test 1	Test 2	Avg	Exam	(in Hrs)				
PEDPE2022	Design of Power Converters	20	20	20	80	3	-	-	100	

Course Objectives	 To understand and select high power devices, gain knowledge about power modules, suitable packaging and latest market trends. To understand and analyse high power converters and the protection needed for the converters. To keep abreast with the latest technologies and research going on in different areas related to high power converters. To enhance the knowledge of practical aspects in the design of Power Converters. To deliver technological solution in the field of power electronics.
	Upon successful completion of this course, the learner will be able to
	1. Analyze and understand high power devices and practical issues in implementing high power converters.
Course Outcomes	2. Understand protection aspects and design considerations to build proper power electronics systems.
	3. Design closed loop control and discretize controllers for using digital control methods.
	4. Analyze and design converters in the fields of drives, power generation and energy conversion,
	industrial applications, extraction of energy from renewable sources.

Module	Details	Hours
Module I	High power switching devices and drivers: Issues with conventional switches in high power applications, View of power device market trend, series connected devices, voltage equalization techniques-static and dynamic, intelligent power modules, packages for high power devices, drivers for wide band gap devices.	04
Module II	High power converters and Protection:Review of Multi level inverters, Cascaded H bridge multilevel inverters, Modular Multilevel converters.Practical Aspects in building Three-Phase Power Converters- Motor drives, Gridapplications.Protection aspects-Over current, Over voltage, temperature, snubber design- component selection, basics of resonant snubber and regenerative snubber, numericalsincluded.	10
Module III	Design considerations: Electrical specifications, Mechanical specifications, Environmental specifications, EMI/EMC specifications, Hardware specifications, Thermal Management, Selection of switching frequency, Selection of switching device and topology, cost.	06

Module IV	Closed-Loop control: Analog PWM controllers, Digital control-advantages, Signal conditioning and sampling, digital implementation of PWM modulator-single update and double update mode, PI & PR controller discretization, effect of computational delay, Processors in converter control, Grid synchronization techniques, introduction to non-linear control methods.	08
Module V	Design of High power converters for drives: Requirements and challenges, switching device constraints, converter configurations, control aspects, case studies of design of drive application.	05
Module VI	Design of Grid interfaced converters: Requirements and challenges, high power grid interfaced converters, current control, grid synchronization, filter design, dc link voltage control, case studies on grid interfacing of renewable energy sources.	06

- 1. Dorin O. Neacsu, "Switching Power Converters, Medium and High Power", CRC press, Taylor & Francis group, second edition, 2017.
- 2. Bin Wu, "High Power Converters and AC drives", IEEE press, John Wiley & Sons.
- 3. N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications and Design", John Wiley & Sons, 2007.
- 4. Simon Ang, Alejandro Oliva, "Power-Switching Converters", Taylor and Francis group.
- 5. A Yazdani, R. Iravani, "Voltage- Sourced Converters in Power Systems", Wiley, IEEE press.
- 6. B. Jayant Baliga, "Silicon Carbide Power Devices", World Scientific, 2005.

Reference Books:

- 1. R. Teodoresco, M. Liserrie, P. Rodr'ıguez "Grid Converters for Photovoltaic and Wind Power Systems", John Wiley and Sons.
- 2. L. Umanad, "Power Electronics: Essentials & Applications", Wiley.
- 3. V. Ramanarayanan, "Course Material on Switched Mode Power Conversion", 2007.
- 4. M. Jamil, M. Rizwan, D.P Kothari, "Grid Integration of Solar Photovoltaic Systems", CRC press, Taylor & Francis.
- 5. Peter Friedrichs, T. Kimoto, L. Ley and G. Pensl, "Silicon Carbide, Volume 2: Power Devices and Sensors", Wiley Publications, 2011.
- 6. Relevant Papers published in reputed Journals, Conference/NPTEL lectures.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

	M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II						
Subject code	Subject Name	Teaching (Contact	scheme Hours)	Credits Assigned			
	Power Converters for	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
PEDPE2023	Renewable Energy	3		3		3	

		Examination Scheme									
	Subject Name										
Subject code		Internal Assessment			End Sem.	Exam Duration	Term Work	Pract/ Oral	Tota 1		
		Test 1	Test 2	Avg.	Exam	(in Hrs)					
PEDPE2023	Power Converters for Renewable Energy	20	20	20	80	3	-	-	100		

Course	1. To introduce the distributed generation system based on renewable energy resources.
Objectives	2. To know the practical aspects of design of power converters for renewable energy sources.
	3. To know the control implementation for power converters.
	Upon successful completion of this course, the learner will be able to:
	1. To understand operating principle and characteristics of various RES
	2. To identify and describe various topologies of DGs based on use of various combinations of
	RES.
Course	3. To design the power converters for solar PV applications.
Outcomes	4. To identify and describe the design considerations for the power converters for wind energy
	5. To identify and describe the design considerations for the power converters for fuel cell systems.
	6. To model and design compensator for power converters operating in voltage and current control
	mode.

Module	Details	Hours
Module I	Introduction to renewable sources: Review of renewable energy sources, operating principles and characteristics of: Solar PV, Wind Energy Systems (WES), Fuel cells; Economics and statistics related to renewable energy. Review of energy storage systems with Batteries and ultra-capacitors. Categorization of energy sources	4
Module II	Distributed generation system: Basic concepts, various topologies and design considerations for standalone systems and grid connected systems, Power quality and protection issues, review of regulatory standards related to various aspects of renewable energy systems	4
Module III	Design of power converters for Solar PV: MPPT (maximum power point tracking), Design of DC-DC converters for MPPT, MPPT algorithms, Implementation of MPPT control through DSP controllers. Topologies for grid connected and standalone applications: single phase and three phase systems, Design of multi stage solar PV grid connected and standalone systems. Low and high power Applications. Integration of ES-battery and ultra-capacitor for performance improvement, Converters for PV based charging stations for EV	10
Module IV	Design of power converters for WES: Topologies of WES, design considerations for WES with rectifier / inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines, Matrix converter topology for grid connected system.	06

	Design of power converters for Fuel Cell: Review of fuel cell technology, Design of				
Module V	DC-DC converters for PEM fuel cell, MPPT in Fuel Cell, Design considerations for				
	multi-stage converter / inverter system for grid connected operations.				
	Design of compensator for voltage and current control modes: Modelling of the				
Madula VI	system, derivation of transfer function compensator for voltage and current control	06			
Module VI	modes, design of PI and Type III controller in power conditioning system for renewable				
	energy sources.				

Text Books:

- 1. Power Electronics, Converters, Applications & Designl, N. Mohan, T. M. Undeland, W.P Robbins, Wiley India Pvt. Ltd.
- 2. Voltage Source Converters in Power Systems: Modeling, Control and Applications, Amirnaser Yezdani, and Reza Iravani, IEEE John Wiley Publications
- 3. Power Switching Converters: Medium and High Power, Dorin Neacsu, CRC press, Taylor & Francis, 2006
- 4. M.H. Rashid, -Power Electronics Hand bookl, Academic Press, 2001

References books /websites:

- 1. DSP Based Electromechanical Motion Control, Hamid Toliyat and Steven Campbell, CRC Press
- 2. Digital Signal Processors Architectures, Implementations, and Applications, Sen M. Kuoand Woon-SengGan Prentice Hall
- 3. Fuel Cell System, Leo J.M.J. Blomen and michael N. Mugerwa, New York, Plenum Press, 1993.
- 4. Wind Energy Explained, theory design and applications, J.F. Manwell, J.G. McGowan Wiley publication
- 5. Fuel Cell Systems Explained, James Larminie, Andrew Dicles, Wiley publication
- 6. Principles of Solar EngineeringI, D. Y. Goswami, F. Kreith and J. F. Kreider, Taylor and Francis, Philadelphia, 2000
- 7. Biomass Regenerable Energy, D. D. Hall and R. P. Grover, John Wiley, New York, 1987.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M.E. Electrical Engineering (Power Electronics and Drives)- Sem-II						
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned		
PEDIE2011	Environmental	Theory	Pract./Tut.	Theory	Pract./Tut.	Tota l
	Management	3		3		3

	Course Name	Examination Scheme								
Course code		Internal Assessment			End	Exam	Term	Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam	Duration (in Hrs)	Work			
PEDIE2011	Environmental Management	20	20	20	80	3			100	

Course Objectives	 Understand and identify environmental issues relevant to India and global concerns Learn concepts of ecology Familiarise environment related legislations
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1 Understand the concept of environmental management 2 Understand ecosystem and interdependence, food chain etc. 3 Understand and interpret environment related legislations

Module	Detailed Contents	Hours					
	Introduction and Definition of Environment: Significance of Environment Management						
1	for contemporary managers, Career opportunities, Environmental						
	issues relevant to India, Sustainable Development, the Energy scenario						
	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion,						
2	Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made						
	disasters, Atomic/Biomedical hazards, etc.						
3	Concepts of Ecology: Ecosystems and interdependence between living organisms,						
5	habitats, limiting factors, carrying capacity, food chain, etc.						
	Scope of Environment Management, Role and functions of Government as a planning						
4	and regulating agency	10					
	Environment Quality Management and Corporate Environmental Responsibility						
5	Total Quality Environmental Management, ISO-14000, EMS certification.	05					
6	General overview of major legislations like Environment Protection Act, Air (P & CP)						
	Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	05					

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell,Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005

- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, MaclillanIndia, 2000
- Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC PressEnvironment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M.E. Electrical Engineering (Power Electronics and Drives)- Sem-II						
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned		
PEDIE2012	Entrepreneurship Development	Theory	Pract./Tut.	Theory	Pract./Tut.	Tota l
		3		3		3

		Examination Scheme									
Course code	Course Name	Internal Assessment			End	Exam	Term	Oral	Total		
		Test 1	Test 2	Avg	Sem. Exam	Duration (in Hrs)	Work				
PEDIE2012	Entrepreneurship Development	20	20	20	80	3			100		

Course	1 To acquaint with entrepreneurship and management of business
Objectives	2 Understand Indian environment for entrepreneurship
	3 Idea of EDP, MSME
	Upon successful completion of this course, the learner will be able to:
Course	1 Understand the concept of business plan and ownerships
Outcomes	2 Interpret key regulations and legal aspects of entrepreneurship in India
	3 Understand government policies for entrepreneurs

Module	Detailed Contents	Hours		
	Overview of Entrepreneurship: Definitions, Roles and Functions/Values of			
	Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship			
1	in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of	04		
1	Business Ownership	04		
	Role of Money and Capital Markets in Entrepreneurial Development: Contribution of			
	Government Agencies in Sourcing information for Entrepreneurship			
	Business Plans and Importance of Capital to Entrepreneurship: Preliminary and			
	Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as			
	Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks,			
2	Assumptions and Conclusion, Capital and its Importance to the Entrepreneur	09		
	Entrepreneurship and Business Development: Starting a New Business, Buying an			
	Existing Business, New Product Development, Business Growth and the Entrepreneur			
	Law and its Relevance to Business Operations			
3	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP	05		
5	cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05		
	Indian Environment for Entrepreneurship: key regulations and legal aspects,			
	MSMEDAct 2006 and its implications, schemes and policies of the Ministry of MSME,			
4	role andresponsibilities of various government organisations, departments, banks etc.,	08		
	Role ofState governments in terms of infrastructure developments and support etc.,	00		
	Public private partnerships, National Skill development Mission, Credit Guarantee Fund,			
	PMEGP, discussions, group exercises etc.			
	Effective Management of Business: Issues and problems faced by micro and small			
5	enterprises and effective management of M and S enterprises (risk management, credit	08		
5	availability, technology innovation, supply chain management, linkage with large	00		
	industries), exercises, e-Marketing			

	Achieving Success In The Small Business: Stages of the small business life cycle,	
6	fourtypes of firm-level growth strategies, Options – harvesting or closing small	
	business Critical Success factors of small business	

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M.E. Electrical Engineering (Power Electronics and Drives)- Sem-II							
Course Code	Course Name	Teaching scheme (Contact Hours)		Credits Assigned			
PEDIE2013	Finance Management	Theory	Pract./Tut.	Theory	Pract./Tut.	Total	
		3		3		3	

	Course Name	Examination Scheme							
		Theory							
Course code		Internal Assessment			End	Exam	Term	Oral	Total
		Test 1	Test 2	Avg	Sem. Exam	DurationWork(in Hrs)		-	
PEDIE2013	Finance Management	20	20	20	80	3			100

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1 Understand Indian finance system and corporate finance 2 Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hours
1	 Overview of Indian Financial System: Characteristics, Components and Functions of Financial System. Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills. Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions 	06
2	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio. Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	06
3	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	09

	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for	
	Capital Budgeting Decisions; Investment Appraisal Criterion-Accounting Rate of	
	Return, Payback Period, Discounted Payback Period, Net Present Value(NPV),	
4	Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of	10
4	Return (MIRR) Working Capital Management: Concepts of Meaning Working	10
	Capital; Importance of Working Capital Management; Factors Affecting an Entity's	
	Working Capital Needs; Estimation of Working Capital Requirements; Management	
	of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources-Equity, Debt, and Hybrids; Mezzanine	
	Finance; Sources of Short Term Finance-Trade Credit, Bank Finance, Commercial	
	Paper; Project Finance.	
5	Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of	05
	CapitalStructure Theories and Approaches- Net Income Approach, Net Operating	
	Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
	between	
	Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an	
06	Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches-	03
	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	

- Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

M.E. Electrical Engineering (Power Electronics and Drives)- Sem-II								
Course Code	Course Name	Teaching scheme (Contact Hours)		Teaching scheme (Contact Hours)Credits Assigned				
PEDIE2014	Project Management	Theory	Pract./Tut.	Theor y	Pract./Tut.	Total		
		3		3		3		

		Examination Scheme							
Course code	Course Name			Theo	r				
		У			у		Ter	Oral	Total
		Internal Assessment End Exam			m Of	Ofai	IUtai		
		Test 1	Test 2	Avg	Sem. Exam	Duratio n (in Hrs)	Wor k		
PEDIE2014	Project Management	20	20	20	80	3			100

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Upon successful completion of this course, the learner will be able to: Apply selection criteria and select an appropriate project from different options. Write work break down structure for a project and develop a schedule based on it. Identify opportunities and threats to the project and decide an approach to deal with them strategically. Use Earned value technique and determine & predict status of the project. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hours
1	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures, PM knowledge areas as per Project Management Institute (PMI)	05
2	Initiating Projects: How to get a project started, selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	06
3	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface; Co- ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart, Introduction to Project Management Information System (PMIS).	08
4	Planning Projects: Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan	06

	Risk Management in projects: Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	
5	 5.1 Executing Projects: Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit 5.3 Project Contracting Project procurement management, contracting and outsourcing, 	08
6	 6.1 Project Leadership and Ethics: Introduction to project leadership, ethics in projects, Multicultural and virtual projects 6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study. 	06

- 1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India
- 2. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th Ed, ProjectManagement Institute PA, USA
- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3. Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be randomly selected from all the modules

	M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II									
Subject code	Subject Name	Teaching s (Contact H	cheme Iours)	Credits Assigned						
BEDI 201 DSP Appl	DSP Applications	Theory	Pract./Tut.	Theory	Pract./Tut.	Total				
I LDL201	Lab		2		1	1				

Subject code Subject Name	Examination Scheme								
		Theory							
	Subject Name	Internal Assessment		End Sem.	Exam Duration	Term Work	Oral	Total	
		Test 1	Test 2	Avg	Exam	(in Hrs)			
PEDL201	DSP Applications Lab						25	25	50

	To impart knowledge on
Course	1. Use of DSP development boards and DSP programming platform
Ohiectives	
Objectives	2. Program DSP for the use of various on board peripherals
	3 Use of DSP for control of power electronic converters
	5. Ose of DST for control of power electronic converters
	Upon successful completion of this course, the learner will be able to:
Course	Upon successful completion of this course, the learner will be able to: 1. Program in DSP for specific applications
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. Program in DSP for specific applications 2. Integrate DSP processor with external applications
Course Outcomes	 Upon successful completion of this course, the learner will be able to: 1. Program in DSP for specific applications 2. Integrate DSP processor with external applications 3. Design and implement closed loop control of power electronic converters using DSP

Hardware and Software tools to be used

- Students can use DSP development boards (Texas Instruments C2000 series like TMS320F28069 / TMS320F28335/TMS 320F28379D or similar with software platform (Code Composer studio) to perform the suggested experiments. Use of training material (videos and lab manuals) available on Texas Instruments website is recommended.
- Use of emulation platforms with DSP target boards facility can also be done to conduct recommended lab experiments

List of suggested experiments:

A. Use of DSP Peripherals: (minimum three)

- 1. Mathematical calculations using DSP
- 2. Sine wave generation using DSP
- 3. Use of Graph utility and real time debugging interface with DSP
- 4. ADC application with DSP board
- 5. PWM (single phase and three phase) generation
- 6. Use of GPIO for status / indications
- 7. Use of communication protocols
- 8. Use of QEP / Capture module for Speed measurement

B. DSP for Power Converter Application (minimum Two)

- 1. DSP based Open loop operation of DC-DC converter
- 2. DSP based Closed Loop operation of DC-DC converter
- 3. DSP based Open loop operation of inverter
- 4. DSP based Closed loop operation of inverter
- 5. DSP based PWM rectifier

C. DSP based Power Electronic System (minimum one)

- 1. DSP based Electric drive: Induction motor with V/F control
- 2. DSP based BLDC motor drive

- 3. DSP based LED lamp control
- 4. DSP based data transfer between two systems with communication interface.

Reference Books:

- 1. Digital Signal Processing in Power Electronics Control Circuits by Krzysztof Sozanski, Springer
- 2. Digital Signal Processing in Power System Protection and Control by Waldemar Rebizant, Janusz Szafran, and Andrzej Wiszniewski, Springer.
- 3. Digital Power Electronics and Applications by *Fang Lin Luo, Hong Ye and Muhammad Rashid*, Elsevier Academic Press.
- 4. Digital Signal Processing in Power Electronics Control Circuits by Krzysztof Sozanski, Springer
- 5. DSP Based Electromechanical Motion Control by Hamid Toliyat and Steven Campbell, CRC Press

Web References:

- 1. https://training.ti.com/c2000-f2837xd-microcontroller-one-day-workshop-series
- 2. https://software
 - dl.ti.com/trainingTTO/trainingTTO public sw/c28x28379/F2837xD Microcontroller M
- 3. https://www.ti.com/microcontrollers-mcus-processors/microcontrollers/c2000-real-time-controlmcus/overview.html
- 4. The Essential Guide for Developing with C2000TMRealTime Microcontrollers: Texas Instruments

Term work:

Term work shall consist of minimum six experiments.							
Experiments Performance	: 10 marks						
Attendance	: 05 marks						
Journal	: 10 marks						

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire lab work

	M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-II									
Subject code	Subject Name	Teaching s (Contact I	scheme Hours)	Credits Assigned						
Skill Based Lab-II Design of Large	Theory	Pract./Tut.	Theory	Pract./Tut.	Total					
	PED Systems		2		1	1				

Subject code	Subject Name	Examination Scheme								
		Theory								
		Internal Assessment		End Sem.	and Exam Em. Duration	Term Work	Oral	Tota l		
		Test 1	Test 2	Avg	Exam	i (in Hrs)				
	Skill Based Lab-II									
PEDSBL201	Design of Large						50	50	100	
	PED Systems									

	To impart knowledge on
	1. DSP programming
Course	2. Design of magnetics in high frequency applications
Objectives	3. Design of closed loop control of power electronic converters
	Upon successful completion of this course, the learner will be able to:
	1. Program in DSP for specific applications
Course	2. Design magnetic components of power electronic converters
Course Outcomes	 Design magnetic components of power electronic converters Design closed loop control of power electronic converters and implement it.

List of suggested experiments:

- 1. Generate a DSP code for applications like MPPT / PLL/ SVM/ any other related to PE and Drives and its testing.
- 2. Inductor design and its fabrication for Buck or Boost or Buck-Boost DC-DC converter (any one converter)
- 3. Transformer Design and its Fabrication for any isolated DC-DC converter
- 4. Design and Implementation of closed loop control of Buck or Boost or Buck-Boost DC-DC converter for switched mode power supplies
- 5. Design and Implementation of any one isolated DC-DC converter in open loop

References:

- 1. Mohan, Ned. et.al, "Power Electronics Converters, Applications and Design", Wiley India Pvt. Ltd., New Delhi.
- 2. L. Umanand, Bhatt, "Design of Magnetic Components for Switched Mode Power Converters", John Wiley & Sons
- 3. NPTEL course on "Design of Power Electronic Converters", Prof. Shabari Nath, IIT Guwahati.
- 4. NPTEL course on "Advanced Power Electronics and Control", Prof. Avik Bhattacharya, IIT Roorkee.

Term work:

Term work shall consist of minimum Two experiments.

Experiments Performance	: 10 marks
Attendance	: 05 marks
Journal	: 10 marks

The final certification and acceptance of term work ensures the minimum passing in the term work.

Oral Examination:

Oral examination will be based on entire lab work

	M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-III									
Subject code	Subject Name	Teaching scheme (Contact Hours)Credits Assigned								
PEDMP301 Major Pro	Major Project:	Theory	Pract./Tut.	Theory	Pract./Tut.	Total				
	Dissertation -I		20		10	10				

		Examination Scheme								
Subject code			Theory							
	Subject Name	Internal Assessment		End Sem. Exam	Exam Duration (in Hrs)	Term Work	Pract/ Oral	Total		
		Test 1	Test 2	Avg						
PEDMP301	Major Project: Dissertation -I						100		100	

Guidelines for Dissertation-I

Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format. Guidelines for Assessment of Dissertation-I.

Dissertation-I should be assessed based on following points

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope

Dissertation-I should be assessed through a presentation by a panel of Internal examiners and external examiner appointed by the Head of the Department/Institute of respective Programme.

	M. Tech. in Electrical Engineering (Power Electronics and Drives)- Sem-IV									
Subject code	Subject Name	Teaching s (Contact H	cheme Hours)	Credits Assigned						
PEDMP401 Major Pr	Major Project:	Theory	Pract./Tut.	Theory	Pract./Tut.	Total				
	Dissertation -II		32		16	16				

Subject code	Subject Name	Examination Scheme								
			Theory							
		Internal Assessment		End Sem. Exam	Exam Duration (in Hrs)	Term Work	Oral	Total		
		Test 1	Test 2	Avg						
PEDMP401	Major Project: Dissertation -II						100	100	200	

Guidelines for Assessment of Dissertation II

Dissertation II should be assessed based on following points:

- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- Quality of work attempted or learner contribution
- Validation of results
- Quality of Written and Oral Presentation

Students should publish at least one paper based on the work in referred National/ International conference/Journal of repute.

Dissertation II should be assessed by internal and External Examiners appointed by the BOS of the program